Towards Dependable Swarms and a New Discipline of Swarm Engineering

  • Alan F. T. Winfield
  • Christopher J. Harper
  • Julien Nembrini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3342)


This review paper sets out to explore the question of how future complex engineered systems based upon the swarm intelligence paradigm could be assured for dependability. The paper introduces the new concept of ‘swarm engineering’: a fusion of dependable systems engineering and swarm intelligence. The paper reviews the disciplines and processes conventionally employed to assure the dependability of conventional complex (and safety critical) systems in the light of swarm intelligence research and in so doing tries to map processes of analysis, design and test for safety-critical systems against relevant research in swarm intelligence. A case study of a swarm robotic system is used to illustrate this mapping. The paper concludes that while some of the tools needed to assure a swarm for dependability exist, many do not, and hence much work needs to be done before dependable swarms become a reality.


Mobile Robot Swarm Intelligence Undesirable Behaviour Single Robot Swarm Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, T., Avizienis, A., Carter, W.C.: Dependability: Basic Concepts and Terminology, Series: Dependable Computing and Fault-Tolerant Systems. In: Laprie, J.-C. (ed.), vol. 5, Springer, New York (1992)Google Scholar
  2. 2.
    Arkin, R.C.: Motor Schema based Navigation for a Mobile Robot. In: Proc. IEEE Conf. Robotics and Automation, Raleigh NC, pp. 264–271 (1987)Google Scholar
  3. 3.
    Beni, G.: From swarm intelligence to swarm robotics. In: Proceedings of the SAB 2004 Swarm Robotics Workshop, Santa Monica (2004)Google Scholar
  4. 4.
    Bennett, P.: Software Development for the Channel Tunnel: A Summary. Journal of High Integrity Systems 1(2), 213–220 (1994)Google Scholar
  5. 5.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from natural to artificial systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  6. 6.
    Bonabeau, E., Theraulaz, G.: Swarm Smarts. Scientific American, 72–79 (2000)Google Scholar
  7. 7.
    Brooks, R.A.: Cambrian Intelligence: the Early History of the New AI. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Butler, R.W., Finelli, G.B.: The infeasibility of quantifying the reliability of lifecritical real-time software. IEEE Trans. Software Engineering 19(1), 3–12 (1993)CrossRefGoogle Scholar
  9. 9.
    Connell, J.H.: Minimalist mobile robotics: a colony-style architecture for an artificial creature. Academic Press Professional, San Diego (1990)zbMATHGoogle Scholar
  10. 10.
    Fagan, M.E.: Design and Code Inspections to Reduce Errors in Program Development. IBM Systems Journal 15(3) (1976)Google Scholar
  11. 11.
    Harper, C., Winfield, A.: Direct Lyapunov Design A Synthesis Procedure for Motor Schema Using a Second-Order Lyapunov Stability Theorem. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne (October 2002)Google Scholar
  12. 12.
    Harper, C.: A Rational Methodology for Designing Behaviour Based Systems for Safety Related Applications, PhD Thesis, University of the West of England, Bristol (2004)Google Scholar
  13. 13.
    Institution of Electrical Engineers: Guidelines for the documentation of computer software for real time and interactive systems, 2nd edn. IEE London (1990)Google Scholar
  14. 14.
    Lerman, K., Galstyan, A.: A General Methodology for Mathematical Analysis of Multi-Agent Systems, USC Information Sciences Technical Report ISI-TR-529 (2001)Google Scholar
  15. 15.
    Lerman, K., Martinoli, A., Galystan, A.: A Review of Modeling Methods for Swarm Robotic Systems. In: Proceedings of the SAB 2004 Swarm Robotics Workshop, Santa Monica (2004)Google Scholar
  16. 16.
    Littlewood, B., Thomas, M.: Reasons why Safety-Critical Avionics Software cannot be Adequately Validated. In: Proc. 1st UK Safety Systems Symposium. Springer, Heidelberg (1993)Google Scholar
  17. 17.
    Nehmzow, U., Walker, K.: The Behaviour of a Robot is Chaotic. AISB Journal 1(4), 373–388 (2003)Google Scholar
  18. 18.
    Nembrini, J., Winfield, A., Melhuish, C.: Minimalist Coherent Swarming of Wireless Connected Autonomous Mobile Robots. In: Proc. Simulation of Artificial Behaviour 2002, Edinburgh (August 2002)Google Scholar
  19. 19.
    Martinoli, A., Ijspeert, A.J., Gambardella, L.M.: A Probabilistic model for understanding and comparing collective aggregation mechanisms. In: Floreano, D., Nicoud, J.D., Mondada, F. (eds.) ECAL 1999. LNCS(LNAI), vol. 1674, pp. 575–584. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    McCabe, T.A.: A Cyclomatic Complexity Measure. IEEE Trans. on Software Engineering 2(4) (1976)Google Scholar
  21. 21.
    Şahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics and Autonomous Systems 16 (1995)Google Scholar
  23. 23.
    Smithers, T.: On quantitative performance measures of robot architectures. Robotics and Autonomous Systems 15, 107–133 (1995)CrossRefGoogle Scholar
  24. 24.
    Støy, K.: Using situated communication in distributed autonomous robotics. In: Proc. 7th Scandinavian Conference on Artificial Intelligence (2001)Google Scholar
  25. 25.
    Winfield, A.F.T.: Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems, vol. 4, pp. 273–282. Springer, Heidelberg (2000)Google Scholar
  26. 26.
    Winfield, A.F.T., Holland, O.E.: The application of wireless local area network technology to the control of mobile robots. Microprocessors and Microsystems 23(10), 597–607 (2000)CrossRefGoogle Scholar
  27. 27.
    Yokobayashi, Y., Collins, C.H., Leadbetter, J.R., Arnold, F.H., Weiss, R.: Evolutionary Design of Genetic Circuits and Cell-Cell Communications. Advances in Complex Systems 6(1), 37–45 (2003)CrossRefGoogle Scholar
  28. 28.
    Yourdon, E.: Modern Structured Analysis. Prentice-Hall, Englewood Cliffs (1989)Google Scholar
  29. 29.
    Ziemke, T.: On the role of Robot Simulations in Embodied Computer Science. AISB Journal 1(4), 389–399 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alan F. T. Winfield
    • 1
  • Christopher J. Harper
    • 1
  • Julien Nembrini
    • 1
  1. 1.Intelligent Autonomous Systems LaboratoryUWE BristolBristolUK

Personalised recommendations