Skip to main content

Poly-APX- and PTAS-Completeness in Standard and Differential Approximation

(Extended Abstract)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Abstract

We first prove the existence of natural Poly-APX-complete problems, for both standard and differential approximation paradigms, under already defined and studied suitable approximation preserving reductions. Next, we devise new approximation preserving reductions, called FT and DFT, respectively, and prove that, under these reductions, natural problems are PTAS-complete, always for both standard and differential approximation paradigms. To our knowledge, no natural problem was known to be PTAS-complete and no problem was known to be Poly-APX-complete until now. We also deal with the existence of intermediate problems under FT- and DFT-reductions and we show that such problems exist provided that there exist NPO-intermediate problems under Turing-reduction. Finally, we show that min coloring is APX-complete for the differential approximation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation. In: Combinatorial optimization problems and their approximability properties, Springer, Berlin (1999)

    Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and intractability. In: A guide to the theory of NP-completeness, W. H. Freeman, San Francisco (1979)

    Google Scholar 

  3. Bazgan, C., Escoffier, B., Paschos, V.Th.:Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness. Cahier du LAMSADE 217, LAMSADE, Université Paris-Dauphine, Available on (2004), http://www.lamsade.dauphine.fr/cahiers.html

  4. Crescenzi, P., Panconesi, A.: Completeness in approximation classes. Information and Computation 93, 241–262 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ausiello, G., Crescenzi, P., Protasi, M.: Approximate solutions of NP optimization problems. Theoret. Comput. Sci. 150, 1–55 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crescenzi, P., Trevisan, L.: On approximation scheme preserving reducibility and its applications. Theory of Computing Systems 33, 1–16 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ausiello, G., Bazgan, C., Demange, M., Paschos, V.Th.: Completeness in differential approximation classes. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 179–188. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.: On syntactic versus computational views of approximability. SIAM J 28, 164–191 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ausiello, G., Bazgan, C., Demange, M., Paschos, V. Th.: Completeness in differential approximation classes. Cahier du LAMSADE 204, LAMSADE, Université Paris-Dauphine (2003), Available on, http://www.lamsade.dauphine.fr/cahiers.html

  10. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41, 153–180 (1994)

    MATH  MathSciNet  Google Scholar 

  11. Demange, M., Monnot, J., Paschos, V.Th.: Bridging gap between standard and differential polynomial approximation: the case of bin-packing. Appl. Math. Lett. 12, 127–133 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Orponen, P., Mannila, H.: On approximation preserving reductions: complete problems and robust measures. Technical Report C-1987-28, Dept. of Computer Science, University of Helsinki, Finland (1987)

    Google Scholar 

  13. Halldórsson, M.M.: Approximating discrete collections via local improvements. In: Proc. Symposium on Discrete Algorithms, SODA, pp. 160–169 (1995)

    Google Scholar 

  14. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: Proc. Conference on Computational Complexity, pp. 278–287 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazgan, C., Escoffier, B., Paschos, V.T. (2004). Poly-APX- and PTAS-Completeness in Standard and Differential Approximation. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics