Advertisement

A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms

  • Blaise Genest
  • Anca Muscholl
  • Dietrich Kuske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3340)

Abstract

Existential bounded communication of a communicating finite-state machine means that runs can be scheduled in such a way that message channels are always bounded in size by a value that depends only on the machine. This notion leads to regular sets of representative executions, which allows to get effective algorithms. We show in this paper the equivalence of several formalisms over existentially bounded models: monadic second order logic, communicating automata and globally-cooperative compositional MSC-graphs.

Keywords

Communication Graph Message Sequence Chart Message Relation Channel Content FIFO Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. Information and Computation 127(2), 91–101 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bouajjani, A., Habermehl, P.: Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations. Theoretical Computer Science 221(1-2), 211–250 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The Power of QDDs. SAS 1997, 172–186 (1997)Google Scholar
  5. 5.
    Boigelot, B., Godefroid, P.: Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs. Formal Methods in System Design 14(3), 237–255 (1999)CrossRefGoogle Scholar
  6. 6.
    Bollig, B., Leucker, M.: Message-Passing Automata are expressively equivalent to EMSO logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 146–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2), 323–342 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  9. 9.
    Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Computer Science 154, 67–84 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1,2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Genest, B., Minea, M., Muscholl, A., Peled, D.A.: Specifying and verifying partial order properties using template MSCs. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 195–210. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Gunter, E.L., Muscholl, A., Peled, D.A.: Compositional message sequence charts. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 496–511. Springer, Heidelberg (2001): Journal version International Journal on Software Tools for Technology Transfer (STTT) 5(1), 78–89 (2003)CrossRefGoogle Scholar
  13. 13.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level mSCs: Model-checking and realizability. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 657–668. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: On message sequence graphs and finitely generated regular MSC languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 675–686. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.: A Theory of Regular MSC Languages. To appear in Information and Computation, available at http://www.comp.nus.edu.sg/thiagu/icregmsc.pdf
  16. 16.
    I.T.U.-T.S.: recommendation Z.120, Message Sequence Charts, Geneva (1999)Google Scholar
  17. 17.
    Kuske, D.: Regular sets of infinite message sequence charts. Information and Computation (187), 80–109 (2003)Google Scholar
  18. 18.
    Lohrey, M., Muscholl, A.: Bounded MSC communication. Information and Computation (189), 135–263 (2004)Google Scholar
  19. 19.
    Leue, S., Mayr, R., Wei, W.: A scalable incomplete test for the boundedness of UML RT models. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 327–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Morin, R.: Recognizable sets of message sequence charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Madhusudan, P., Meenakshi, B.: Beyond message sequence graphs. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Mazurkiewicz, A.: Concurrent program schemes and their interpretation. Technical report, DAIMI Report PB-78, Aarhus University (1977)Google Scholar
  23. 23.
    Muscholl, A., Peled, D.: Message Sequence Graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Ochmański, E.: Regular behaviour of concurrent systems. Bulletin of the EATCS 27, 56–67 (1985)Google Scholar
  25. 25.
    Peled, D.: Specification and verification of Message Sequence Charts. FORTE/PSTV 2000, 139–154 (2000)Google Scholar
  26. 26.
    Schnoebelen, Ph.: Verifying lossy channel systems has nonprimitive recursive complexity. Information Processing Letter 83(5), 251–261 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
  28. 28.
    Thomas, W.: On logical definability of trace languages. In: Diekert, V. (eds.) Proceedings of a workshop of the ESPRIT BRA No 3166: Algebraic and Syntactic Methods in Computer Science (ASMICS) 1989, Report TUM-I9002, Technical University of Munich, pp. 172–182 (1990)Google Scholar
  29. 29.
    Zielonka, W.: Note on finite asynchronous automata, R.A.I.R.O. Informatique Thorique et Applications 21, 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Blaise Genest
    • 1
  • Anca Muscholl
    • 1
  • Dietrich Kuske
    • 2
  1. 1.LIAFAUniversité Paris 7France
  2. 2.Institut für AlgebraTechnische Universität DresdenGermany

Personalised recommendations