Advertisement

Words Avoiding \(\frac{7}{3}\)-Powers and the Thue–Morse Morphism

  • Narad Rampersad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3340)

Abstract

In 1982, Séébold showed that the only overlap-free binary words that are the fixed points of non-identity morphisms are the Thue–Morse word and its complement. We strengthen Séébold’s result by showing that the same result holds if the term ‘overlap-free’ is replaced with ‘\(\frac{7}{3}\)-power-free’. Furthermore, the number \(\frac{7}{3}\) is best possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allouche, J.-P., Currie, J., Shallit, J.: Extremal infinite overlap-free binary words. Electron. J. Combin. 5, #R27 (1998)MathSciNetGoogle Scholar
  2. 2.
    Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Berstel, J., Séébold, P.: A characterization of overlap-free morphisms. Discrete Appl. Math. 46, 275–281 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dejean, F.: “Sur un théorème de Thue”. J. Combin. Theory Ser. A 13, 90–99 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fife, E.: Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261, 115–136 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gottschalk, W., Hedlund, G.: A characterization of the Morse minimal set. Proc. Amer. Math. Soc. 15, 70–74 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free binary words. J. Combin. Theory Ser. A 104, 335–347 (2004)CrossRefGoogle Scholar
  8. 8.
    Kolpakov, R., Kucherov, G., Tarannikov, Y.: On repetition-free binary words of minimal density, WORDS (Rouen, 1997). Theoret. Comput. Sci. 218, 161–175 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Morse, M., Hedlund, G.: Unending chess, symbolic dynamics, and a problem in semi-groups. Duke Math. J. 11, 1–7 (1944)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Restivo, A., Salemi, S.: Overlap free words on two symbols. In: Perrin, D., Nivat, M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 198–206. Springer, Heidelberg (1984)Google Scholar
  11. 11.
    Séébold, P.: Morphismes itérés, mot de Morse et mot de Fibonacci. C. R. Acad. Sci. Paris Sér. I Math. 295, 439–441 (1982)zbMATHGoogle Scholar
  12. 12.
    Séébold, P.: Overlap-free sequences. In: Nivat, M., Perrin, D. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 207–215. Springer, Heidelberg (1984)Google Scholar
  13. 13.
    Séébold, P.: Sequences generated by infinitely iterated morphisms. Discrete Appl. Math. 11, 255–264 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Shur, A.M.: The structure of the set of cube-free ℤ-words in a two-letter alphabet (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 64(2000), 847–871 (2000); English translation in Izv. Math. 64, 847–871 (2000)Google Scholar
  15. 15.
    Thue, A.: Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Math. Nat. Kl. 1, 1–67 (1912)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Narad Rampersad
    • 1
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations