Advertisement

On Codes Defined by Bio-operations

  • Mark Daley
  • Michael Domaratzki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3340)

Abstract

We consider the classes of ⊕-codes and⊗-codes, which are superclasses of outfix and hypercodes, respectively. These restrictions are based on the synchronized insertion operation, which serves as a model for the gene rearrangement function in certain unicellular organisms. We investigate the classes of ⊕-codes and⊗-codes from a theoretical perspective, examine their relationships with traditional code classes and consider related decidability problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J., Perrin, D.: Theory of Codes (1996), Available at http://www-igm.univ-mlv.fr/%7Eberstel/LivreCodes/Codes.html
  2. 2.
    Daley, M., Ibarra, O., Kari, L.: Closure properties and decision questions of some language classes under ciliate bio-operations. Theor. Comp. Sci. 306(1), 19–38 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Daley, M., Kari, L.: Some properties of ciliate bio-operations. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 116–127. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Daley, M., Kari, L., McQuillan, I.: Families of languages defined by ciliate bio-operations. Theor. Comput. Sci. 320(1), 51–69 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Domaratzki, M.: Trajectory-Based Codes. Acta Inf. 40(6–7), 491–527 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Haines, L.: On free monoids partially ordered by embedding. J. Comb. Theory 6, 94–98 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Harju, T., Karhumäki, J.: Morphisms. In: [17], pp. 439–510.Google Scholar
  8. 8.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2(3), 326–336 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ito, M., Jürgensen, H., Shyr, H., Thierrin, G.: Outfix and infix codes and related classes of languages. J. Comp. Sys. Sci. 43, 484–508 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Jürgensen, H., Konstantinidis, S.: Codes. In: [17], pp. 511–600.Google Scholar
  11. 11.
    Kari, L.: On language equations with invertible operations. Theor. Comput. Sci. 132, 129–150 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kari, L., Kitto, R., Thierrin, G.: Codes, involutions, and DNA encodings. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta. Inf. 40(2), 119–157 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kari, L., Konstantinidis, S., Sosík, P.: On properties of bond-free DNA languages. Technical Report 609, Computer Science Department, University of Western Ontario (Submitted for publication) (2003)Google Scholar
  15. 15.
    Latteux, M., Roos, Y.: Synchronized shuffle and regular languages. In: Karhumäki, J., et al. (eds.) Jewels are Forever: Contributions on Theoretical Computer Science in Honour of Arto Salomaa, pp. 35–44. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)zbMATHGoogle Scholar
  17. 17.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, Vol. I. Springer-Verlag, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mark Daley
    • 1
  • Michael Domaratzki
    • 2
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada
  2. 2.Jodrey School of Computer ScienceAcadia UniversityWolfvilleCanada

Personalised recommendations