Advertisement

Some Conditions for the Existence of (d,k)-Digraphs

  • Yus Mochamad Cholily
  • Edy Tri Baskoro
  • Saladin Uttunggadewa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3330)

Abstract

A (d,k)-digraph is a diregular digraph of degree d ≥ 4, diameter k ≥ 3 and the number of vertices d + d 2 + ... + d k . The existence problem of (d,k)-digraphs is one of difficult problem. In this paper, we will present some new necessary conditions for the existence of such digraphs.

Keywords

Directed Graph Discrete Mathematic Internal Vertex Directed Cycle Result Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baskoro, E.T., Miller, M., Plesník, J.: Further results on almost Moore digraph. Ars Combinatoria 56, 43–63 (2000)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Baskoro, E.T., Miller, M., Plesník, J.: On the structure of digraphs with order close to the Moore bound. Graphs and Combinatorics 14, 109–119 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baskoro, E.T., Miller, M., Širáň, J., dan Sutton, M.: Complete characterization of almost Moore digraphs of degree three. Journal of Graph Theory (in press) Google Scholar
  4. 4.
    Bermond, J.C., Delorme, C., Quisquater, J.J.: Strategies for interconnection networks: Some methods from graph theory. Journal of Parallel and Distributed Computing 3, 433–449 (1986)CrossRefGoogle Scholar
  5. 5.
    Bridges, W.G., Toueg, S.: On impossibility of directed Moore graphs. J. Combinatorial Theory Series B 29, 339–341 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fiol, M.A., Alegre, I., Yebra, J.L.A.: Line digraph iteration and the (d,k) problem for directed graphs. In: Proc. 10th Symp. Comp. Architecture, Stockholn, pp. 174–177 (1983)Google Scholar
  7. 7.
    Fiol, M.A., Yebra, J.L.A.: Dense bipartite digraphs. J. Graph Theory 14, 687–700 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gimbert, J.: On the existence of (d,k)-digraphs. Discrete Mathematics 197/198, 375–391 (1999)MathSciNetGoogle Scholar
  9. 9.
    Gimbert, J.: Enumeration of almost Moore digraphs of diameter 2. Discrete Mathematics 231, 177–190 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Miller, M., Fris, I.: Minimum diameter of direguler digraphs of degree 2. Computer Journal 31, 71–75 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Miller, M., Fris, I.: Maximum order digraphs for diameter 2 or degree 2. In: Pullman Volume of Graphs and Matrices. Lecture Note in Pure and Applied Mathematics, vol. 139, pp. 269–298 (1992)Google Scholar
  12. 12.
    Miller, M., Gimbert, J., Širáň, J., Slamin: Almost Moore digraphs are diregular. Discrete Mathematics 218(1-3), 265–270 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Plesník, J., Znám, Š.: Strongly geodetic directed graphs. Acta F.R.N. Univ. Comen. Mathematica XXIX, 29–34 (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yus Mochamad Cholily
    • 1
  • Edy Tri Baskoro
    • 1
  • Saladin Uttunggadewa
    • 1
  1. 1.Department of MathematicsInstitut Teknologi Bandung (ITB)BandungIndonesia

Personalised recommendations