Advertisement

A General Framework for Coloring Problems: Old Results, New Results, and Open Problems

  • Hajo Broersma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3330)

Abstract

In this survey paper we present a general framework for coloring problems that was introduced in a joint paper which the author presented at WG2003. We show how a number of different types of coloring problems, most of which have been motivated from frequency assignment, fit into this framework. We give a survey of the existing results, mainly based on and strongly biased by joint work of the author with several different groups of coauthors, include some new results, and discuss several open problems for each of the variants.

AMS Subject Classifications: 05C15,05C85,05C17

Keywords

graph coloring graph partitioning forbidden subgraph planar graph computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agnarsson, G., Halldórsson, M.M.: Coloring powers of planar graphs. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, pp. 654–662 (2000)Google Scholar
  2. 2.
    Andreou, M., Spirakis, P.G.: Efficient colouring squares of planar graphs (2003) (preprint)Google Scholar
  3. 3.
    Appel, K., Haken, W.: Every planar map is four colourable. Part I: Discharging. Illinois J. Math. 21, 429–490 (1977)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Appel, K., Haken, W., Koch, J.: Every planar map is four colourable. Part II: Reducibility. Illinois J. Math. 21, 491–567 (1977)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L., Broersma, H.J., Fomin, F.V., Pyatkin, A.V., Woeginger, G.J.: Radio Labeling with Pre-assigned Frequencies. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 211–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: λ-coloring of graphs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395–406. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Borodin, O.V., Broersma, H.J., Glebov, A., van den Heuvel, J.: Stars and bunches in planar graphs. Part I: Triangulations (2001) (preprint)Google Scholar
  8. 8.
    Borodin, O.V., Broersma, H.J., Glebov, A., van den Heuvel, J.: Stars and bunches in planar graphs. Part II: General planar graphs and colourings (2001) (preprint)Google Scholar
  9. 9.
    Borodin, O.V., Woodall, D.R.: The weight of faces in plane maps. Math. Notes 64, 562–570 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Broersma, H.J., Fomin, F.V., Golovach, P.A., Woeginger, G.J.: Backbone colorings for networks. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 131–142. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Broersma, H.J., Fujisawa, J., Yoshimoto, K.: Backbone colorings with perfect matching backbones (2003) (preprint)Google Scholar
  12. 12.
    Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Discrete Math. 9, 309–316 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Damaschke, P., Deogun, J.S., Kratsch, D., Steiner, G.: Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm. Order 8, 383–391 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Engebretsen, L.: An explicit lower bound for TSP with distances one and two. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 373–382. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Fiala, J., Fishkin, A.V., Fomin, F.V.: Online and offline distance constrained labeling of disk graphs. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 464–475. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of λ-labelings. Discrete Appl. Math. 113, 59–72 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fiala, J., Kratochvíl, J., Proskurowski, A.: Distance constrained labeling of precolored trees. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 285–292. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Fotakis, D.A., Nikoletseas, S.E., Papadopoulou, V.G., Spirakis, P.G.: Hardness results and efficient approximations for frequency assignment problems and the radio coloring problem. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 75, 152–180 (2001)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Fotakis, D.A., Spirakis, P.G.: A Hamiltonian approach to the assignment of non-reusable frequencies. In: Arvind, V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 18–29. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  21. 21.
    Golovach, P.: L(2,1)-coloring of precolored cacti (2002) (manuscript)Google Scholar
  22. 22.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  23. 23.
    Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Habib, M., Möhring, R.H., Steiner, G.: Computing the bump number is easy. Order 5, 107–129 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hale, W.K.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68, 1497–1514 (1980)CrossRefGoogle Scholar
  26. 26.
    Hammer, P.L., Földes, S.: Split graphs. Congressus Numerantium 19, 311–315 (1977)Google Scholar
  27. 27.
    Heawood, P.J.: Map colour theorem. Quart. J. Pure Appl. Math. 24, 332–338 (1890)Google Scholar
  28. 28.
    van den Heuvel, J., Leese, R.A., Shepherd, M.A.: Graph labeling and radio channel assignment. J. Graph Theory 29, 263–283 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    van den Heuvel, J., McGuinness, S.: Colouring the square of a planar graph (1999) (preprint)Google Scholar
  30. 30.
    Jensen, T.R., Toft, B.: Graph Coloring Problems. John-Wiley & Sons, New York (1995)zbMATHGoogle Scholar
  31. 31.
    Jonas, T.K.: Graph coloring analogues with a condition at distance two: L(2,1)-labellings and list λ-labellings. Ph.D. Thesis, University of South Carolina (1993)Google Scholar
  32. 32.
    Leese, R.A.: Radio spectrum: a raw material for the telecommunications industry. In: Progress in Industrial Mathematics at ECMI 1998, Teubner, Stuttgart, pp. 382–396 (1999)Google Scholar
  33. 33.
    Molloy, M., Salavatipour, M.R.: A bound on the chromatic number of the square of a planar graph (2001) (preprint)Google Scholar
  34. 34.
    Papadimitriou, C.H., Yannakakis, M.: The travelling salesman problem with distances one and two. Math. Oper. Res. 18, 1–11 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The Four-Colour Theorem. J. Comb. Th. (B) 70, 2–44 (1997)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Sakai, D.: Labeling chordal graphs: distance two condition. SIAM J. Discrete Math. 7, 133–140 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Schäffer, A.A., Simons, B.B.: Computing the bump number with techniques from two-processor scheduling. Order 5, 131–141 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Wegner, G.: Graphs with given diameter and a colouring problem. University of Dortmund (1977) (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hajo Broersma
    • 1
  1. 1.Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations