Advertisement

Antimagic Valuations for the Special Class of Plane Graphs

  • Martin Bača
  • Edy Tri Baskoro
  • Mirka Miller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3330)

Abstract

We deal with the problem of labeling the vertices, edges and faces of a special class of plane graphs with 3-sided internal faces in such a way that the label of a face and the labels of the vertices and edges surrounding that face all together add up to the weight of that face. These face weights then form an arithmetic progression with common difference d.

Keywords

Special Class Plane Graph Arithmetic Progression Edge Label Grid Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bača, M.: On magic labelings of type (1,1,1) for three classes of plane graphs. Math. Slovaca 39, 233–239 (1989)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bača, M.: On magic labelings of type (1,1,1) for the special class of plane graphs. J. Franklin Inst. 329, 549–553 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bača, M.: On magic labelings of grid graphs. Ars. Combin. 33, 295–299 (1990)Google Scholar
  4. 4.
    Bača, M.: On magic labelings of honeycomb. Discrete Math. 105, 305–311 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bača, M., Miller, M.: On d-antimagic labelings of type (1,1,1) for prisms. JCMCC 44, 199–207 (2003)zbMATHGoogle Scholar
  6. 6.
    Hartsfield, N., Ringel, G.: Pearls in Graph Theory. Academic Press, Boston (1990)zbMATHGoogle Scholar
  7. 7.
    Lih, K.-W.: On magic and consecutive labelings of plane graphs. Utilitas Math. 24, 165–197 (1983)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Wagner, K., Bodendiek, R.: Graphentheorie III. BI-Wiss. Verlag, Mannheim Leipzig (1993)Google Scholar
  9. 9.
    Wallis, W.D.: Magic Graphs. Birkhäuser, Boston (2001)zbMATHGoogle Scholar
  10. 10.
    West, D.B.: An Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Bača
    • 1
  • Edy Tri Baskoro
    • 2
  • Mirka Miller
    • 3
  1. 1.Department of Appl. MathematicsTechnical UniversityKošiceSlovak Republic
  2. 2.Department of MathematicsInstitut Teknologi BandungIndonesia
  3. 3.School of Information Technology and Mathematical SciencesUniversity of BallaratAustralia

Personalised recommendations