(a,d)-Edge-Antimagic Total Labelings of Caterpillars

  • K. A. Sugeng
  • M. Miller
  • Slamin
  • M. Bača
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3330)


For a graph G = (V,E), a bijection g from V(G) ∪ E(G) into { 1,2, ..., ∣ V(G) ∣ + ∣ E(G) ∣ } is called (a,d)-edge-antimagic total labeling of G if the edge-weights w(xy) = g(x) + g(y) + g(xy), xyE(G), form an arithmetic progression with initial term a and common difference d. An (a,d)-edge-antimagic total labeling g is called super (a,d)-edge-antimagic total if g(V(G)) = { 1,2,..., ∣ V(G) ∣ } .

We study super (a,d)-edge-antimagic total properties of stars S n and caterpillar S n1,n2,...,nr .


Previous Theorem Arithmetic Progression Central Vertex Vertex Label Double Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya, B.D., Hegde, S.M.: Strongly indexable graphs. Discrete Math. 93, 275–299 (1991)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bača, M., Lin, Y., Miller, M., Simanjuntak, R.: New constructions of magic and antimagic graph labelings. Utilitas Math. 60, 229–239 (2001)zbMATHGoogle Scholar
  3. 3.
    Bača, M., Lin, Y., Miller, M., Youssef, M.Z.: Edge-antimagic graphs. Discrete Math. (to appear)Google Scholar
  4. 4.
    Bodendiek, R., Walther, G.: On (a,d)-antimagic parachutes. Ars Combin. 42, 129–149 (1996)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bodendiek, R., Walther, G.: (a,d)-antimagic parachutes II. Ars Combin. 46, 33–63 (1997)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Enomoto, H., Lladó, A.S., Nakamigawa, T., Ringel, G.: Super edge-magic graphs. SUT J. Math. 34, 105–109 (1998)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Hartsfield, N., Ringel, G.: Pearls in Graph Theory. Academic Press, Boston (1990)zbMATHGoogle Scholar
  8. 8.
    Hegde, S.M.: Numbered graphs and their applications, Ph.D Thesis, Delhi University (1989)Google Scholar
  9. 9.
    Hegde, S.M.: On indexable graphs: J. Combinatorics. Information and System Sciences 17(3-4), 316–331 (1992)MathSciNetGoogle Scholar
  10. 10.
    Kotzig, A., Rosa, A.: Magic valuations of finite graphs. Canad. Math. Bull. 13, 451–461 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kotzig, A., Rosa, A.: Magic valuations of complete graphs. Publ. CRM 175 (1972)Google Scholar
  12. 12.
    Wallis, W.D.: Magic Graphs. Birkhäuser, Basel (2001)zbMATHGoogle Scholar
  13. 13.
    West, D.B.: An Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K. A. Sugeng
    • 1
  • M. Miller
    • 1
  • Slamin
    • 2
  • M. Bača
    • 3
  1. 1.School of Information Technology and Mathematical SciencesUniversity of BallaratAustralia
  2. 2.FKIPUniversitas JemberIndonesia
  3. 3.Department of Appl. MathematicsTechnical UniversityKošiceSlovak Republic

Personalised recommendations