IJCCGGT 2003: Combinatorial Geometry and Graph Theory pp 133-140

# Disjoint Edges in Topological Graphs

• János Pach
• Géza Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3330)

## Abstract

A topological graph G is a graph drawn in the plane so that its edges are represented by Jordan arcs. G is called simple, if any two edges have at most one point in common. It is shown that the maximum number of edges of a simple topological graph with n vertices and no k pairwise disjoint edges is O(nlog4k − 8 n) edges. The assumption that G is simple cannot be dropped: for every n, there exists a complete topological graph of n vertices, whose any two edges cross at most twice.

## Keywords

Computational Geometry Topological Graph Geometric Graph London Mathematical Society Lecture Note Disjoint Edge
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [AAP97]
Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17, 1–9 (1997)
2. [AE89]
Alon, N., Erdõs, P.: Disjoint edges in geometric graphs. Discrete Comput. Geom. 4, 287–290 (1989)
3. [H34]
Chojnacki, C., Hanani, A.: Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fund. Math. 23, 135–142 (1934)Google Scholar
4. [KM03]
Kolman, P., Matoušek, J.: Crossing number, pair-crossing number, and expansion. Journal of Combinatorial Theory, Ser. B (to appear)Google Scholar
5. [LR99]
Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. Assoc. Comput. Machin. 46, 787–832 (1999)
6. [P99]
Pach, J.: Geometric graph theory. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Notes, vol. 267, pp. 167–200. Cambridge University Press, Cambridge (1999)Google Scholar
7. [PRT03a]
Pach, J., Radoičić, R., Tóth, G.: On quasi-planar graphs. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, AMS, vol. 342 (to appear)Google Scholar
8. [PRT03b]
Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 221–232. Springer, Heidelberg (2003)
9. [PSS96]
Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16, 111–117 (1996)
10. [PST01]
Pach, J., Solymosi, J., Tóth, G.: Unavoidable configurations in complete topological graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 328–337. Springer, Heidelberg (2001); Also in: Discrete and Computational Geometry (accepted)
11. [PT00]
Pach, J., Tóth, G.: Which crossing number is it anyway? Journal of Combinatorial Theory, Series B 80, 225–246 (2000)
12. [PT94]
Pach, J., Törõcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete and Computational Geometry 12, 1–7 (1994)
13. [RT87]
Raghavan, P., Thompson, C.D.: Randomized rounding: A technique for provably good algorithms and algorithmic proof. Combinatorica 7, 365–374 (1987)
14. [T00]
Tóth, G.: Note on geometric graphs. J. Combin. Theory, Ser. A 89, 126–132 (2000)
15. [V98]
Valtr, P.: On geometric graphs with no k pairwise parallel edges. Discrete and Computational Geometry 19, 461–469 (1998)