On a Triangle with the Maximum Area in a Planar Point Set

  • Kiyoshi Hosono
  • Ferran Hurtado
  • Masatsugu Urabe
  • Jorge Urrutia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3330)


For a planar point set P in general position, we study the ratio between the maximum area of an empty triangle with vertices in P and the area of the convex hull of P.


Convex Hull Interior Point General Position London Mathematical Society Maximum Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fleischer, R., Mehlhorn, V., Rote, G., Welzl, E., Yap, C.: Simultaneous inner and outer approximation of shapes. Algorithmica 8, 365–389 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Harborth, H.: Konvexe Funfecke in Ebenen Punktmengen. Elem. Math. 33, 116–118 (1978)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Komlós, J., Pintz, J., Szeméredi, E.: On Heilbronn’s triangle problem. J. London Mathematical Society 24(2), 385–396 (1981)zbMATHCrossRefGoogle Scholar
  4. 4.
    Komlós, J., Pintz, J., Szeméredi, E.: A lower bound for Heilbronn’s problem. J. London Mathematical Society 25(2), 13–24 (1982)zbMATHCrossRefGoogle Scholar
  5. 5.
    Sás, E.: On a certain extremum-property of the ellipse (in Hungarian, English summary). Mat. Fiz. Lapok 48, 533–542 (1941)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kiyoshi Hosono
    • 1
  • Ferran Hurtado
    • 2
  • Masatsugu Urabe
    • 1
  • Jorge Urrutia
    • 3
  1. 1.Department of MathematicsTokai UniversityShizuokaJapan
  2. 2.Departament de Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaBarcelonaEspaña
  3. 3.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMéxico D.F.México

Personalised recommendations