Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3328))

Abstract

We show that coresets do not exist for the problem of 2-slabs in \({\mathbb R}^{3}\), thus demonstrating that the natural approach for solving approximately this problem efficiently is infeasible. On the positive side, for a point set P in \({\mathbb R}^{3}\), we describe a near linear time algorithm for computing a (1+ε)-approximation to the minimum width 2-slab cover of P. This is a first step in providing an efficient approximation algorithm for the problem of covering a point set with k-slabs.

The full version of this paper is available from http://www.uiuc.edu/sariel papers/02/http://www.uiuc.edu/sariel/papers/02/2slab/2slab/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM Comput. Surv. 30, 412–458 (1998)

    Article  Google Scholar 

  2. Bern, M., Eppstein, D.: Approximation algorithms for geometric problems. In: Hochbaum, D.S. (ed.) Approximationg algorithms for NP-Hard problems., pp. 296–345. PWS Publishing Company (1997)

    Google Scholar 

  3. Agarwal, P.K., Aronov, B., Sharir, M.: Computing envelopes in four dimensions with applications. SIAM J. Comput. 26, 1714–1732 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric optimization problems. Discrete Comput. Geom. 16, 317–337 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17, 292–318 (1994)

    Article  MathSciNet  Google Scholar 

  6. Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using the Voronoi diagrams. In: Proc. 1st Canad. Conf. Comput. Geom., p. 41 (1989)

    Google Scholar 

  7. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15, 317–340 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. García-Lopez, J., Ramos, P., Snoeyink, J.: Fitting a set of points by a circle. Discrete Comput. Geom. 20, 389–402 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Le, V.B., Lee, D.T.: Out-of-roundness problem revisited. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 13, 217–223 (1991)

    Article  Google Scholar 

  10. Mehlhorn, K., Shermer, T.C., Yap, C.K.: A complete roundness classification procedure. In: Proc. 13th Annu. ACM Sympos. Comput. Geom., pp. 129–138 (1997)

    Google Scholar 

  11. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Google Scholar 

  12. Rivlin, T.J.: Approximating by circles. Computing 21, 93–104 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Roy, U., Liu, C.R., Woo, T.C.: Review of dimensioning and tolerancing: Representation and processing. Comput. Aided Design 23, 466–483 (1991)

    Article  MATH  Google Scholar 

  14. Roy, U., Zhang, X.: Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error. Comput. Aided Design 24, 161–168 (1992)

    Article  MATH  Google Scholar 

  15. Shermer, T.C., Yap, C.K.: Probing for near centers and relative roundness. In: Proc. ASME Workshop on Tolerancing and Metrology (1995)

    Google Scholar 

  16. Smid, M., Janardan, R.: On the width and roundness of a set of points in the plane. Internat. J. Comput. Geom. Appl. 9, 97–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yap, C.K., Chang, E.C.: Issues in the metrology of geometric tolerancing. In: Laumond, J.P., Overmars, M.H. (eds.) Robotics Motion and Manipulation, pp. 393–400. A. K. Peters, Wellesley (1997)

    Google Scholar 

  18. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder and minimum-width annulus. Internat. J. Comput. Geom. Appl. 12, 67–85 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Agarwal, P.K., Aronov, B., Har-Peled, S., Sharir, M.: Approximation and exact algorithms for minimum-width annuli and shells. Discrete Comput. Geom. 24, 687–705 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM 51, 606–635 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for clustering. Algorithmica 33, 201–226 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for k-line center. In: Proc. 10th Annu. European Sympos. Algorithms, pp. 54–63 (2002)

    Google Scholar 

  24. Megiddo, N.: On the complexity of some geometric problems in unbounded dimension. J. Symb. Comput. 10, 327–334 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Har-Peled, S., Varadarajan, K.R.: High-dimensional shape fitting in linear time. Discrete Comput. Geom. 32, 269–288 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1, 194–197 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms, pp. 801–802 (2003)

    Google Scholar 

  28. Har-Peled, S., Varadarajan, K.R.: Projective clustering in high dimensions using core-sets. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 312–318 (2002)

    Google Scholar 

  29. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proc. 34th Annu. ACM Sympos. Theory Comput., pp. 250–257 (2002)

    Google Scholar 

  30. Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Fast smallest enclosing hypersphere computation. In: Proc. 5th Workshop Algorithm Eng. Exper. (2003)(to appear)

    Google Scholar 

  31. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33, 269–285 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Har-Peled, S.: Clustering motion. Discrete Comput. Geom. 31, 545–565 (2004)

    MATH  MathSciNet  Google Scholar 

  33. Houle, M.E., Toussaint, G.T.: Computing the width of a set. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 10, 761–765 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Har-Peled, S. (2004). No, Coreset, No Cry. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics