Skip to main content

Approximate Range Searching Using Binary Space Partitions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3328))

Abstract

We show how any BSP tree \({\mathcal T}_P\) for the endpoints of a set of n disjoint segments in the plane can be used to obtain a BSP tree of size \(O(n.depth({\mathcal T}_P))\) for the segments themselves, such that the range-searching efficiency remains almost the same. We apply this technique to obtain a BSP tree of size O(n log n) such that ε-approximate range searching queries with any constant-complexity convex query range can be answered in O(min ε> 0{1/ε + k ε }log n) time, where k ε is the number of segments intersecting the ε-extended range. The same result can be obtained for disjoint constant-complexity curves, if we allow the BSP to use splitting curves along the given curves.

We also describe how to construct a linear-size BSP tree for low-density scenes consisting of n objects in \({\mathbb R}^{d}\) such that ε-approximate range searching with any constant-complexity convex query range can be done in \(O(log n + {\rm min}_{\epsilon > 0}{\{1/\epsilon^{(d-1)}+k_{\epsilon}\}})\) time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammar, M., Haverkort, H.J.: Box-trees and R-trees with near-optimal query time. Discrete Comput. Geom. 28, 291–312 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry,Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society (1998)

    Google Scholar 

  3. Agarwal, P.K., Grove, E., Murali, T.M., Vitter, J.S.: Binary space partitions for fat rectangles. SIAM J. Comput. 29, 1422–1448 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agarwal, P.K., Murali, T.M., Vitter, J.S.: Practical techniques for constructing binary space partition for orthogonal rectangles. In: Proc. 13th ACM Symp. of Comput. Geom, pp. 382–384 (1997)

    Google Scholar 

  5. Agarwal, P.K., Suri, S.: Surface Approximation and Geometric Partitions. SIAM J. Comput. 19, 1016–1035 (1998)

    Article  MathSciNet  Google Scholar 

  6. Arya, A., Mount, D.: Approximate range searching, Comput. Geom. Theory Appl. 17, 135–152 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Ballieux, C.: Motion planning using binary space partitions. Technical Report Inf/src/93-25, Utrecht University (1993)

    Google Scholar 

  8. de Berg, M., David, H., Katz, M.J., Overmars, M., van der Stappen, A.F., Vleugels, J.: Guarding scenes against invasive hypercubes. Comput. Geom. 26, 99–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28, 353–366 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Berg, M., de Groot, M., Overmars, M.: New results on binary space partitions in the plane. In: Schmidt, E.M., Skyum, S. (eds.) SWAT 1994. LNCS, vol. 824, pp. 61–72. Springer, Heidelberg (1994)

    Google Scholar 

  11. de Berg, M., Katz, M.J., van der Stappen, A.F., Vleugels, J.: Realistic input models for geometric algorithms. In: Proc. 13th Annu. ACM Sympos. Comput. Geom, pp. 294–303 (1997)

    Google Scholar 

  12. Chin, N., Feiner, S.: Near real time shadow generation using bsp trees. In: Proc. SIGGRAPH 1989, pp. 99–106 (1989)

    Google Scholar 

  13. Duncan, C.A.: Balanced Aspect Ratio Trees, Ph.D. Thesis, John Hopkins University (1999)

    Google Scholar 

  14. Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Balanced aspect ratio trees: Combining the advantages of k-d trees and octrees. In: Proc. 10th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 300–309 (1999)

    Google Scholar 

  15. Fuchs, H., Kedem, Z.M., Naylor, B.: On visible surface generation by a priori tree structures. Comput. Graph. 14(3), 124–133 (1980); Proc. SIGGRAPH 1980

    Article  Google Scholar 

  16. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haverkort, H.J., de Berg, M., Gudmundsson, J.: Box-Trees for Collision Checking in Industrial Installations. In: Proc. 18th ACM Symp. on Computational Geometry, pp. 53–62 (2002)

    Google Scholar 

  18. Naylor, B., Amanatides, J.A., Thibault, W.: Merging BSP trees yields polyhedral set operations. Comput. Graph. 24(4), 115–124 (1990); Proc. SIGGRAPH 1990

    Article  Google Scholar 

  19. Overmars, M.H., Schipper, H., Sharir, M.: Storing line segments in partition trees. BIT 30, 385–403 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Paterson, M.S., Yao, F.F.: Efficient binary space partitions for hidden-surface removal and solid modeling. Discrete Comput. Geom. 5, 485–503 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Paterson, M.S., Yao, F.F.: Optimal binary space partitions for orthogonal objects. J. Algorithms 13, 99–113 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)

    Google Scholar 

  23. Teller, S.J., Séquin, C.H.: Visibility preprocessing for interactive walkthroughs. Comput. Graph 25(4), 61–69 (1991); Proc. SIGGRAPH 1991

    Article  Google Scholar 

  24. Tóth, C.D.: A Note on Binary Plane Partitions. Discrete Comput. Geom. 20, 3–16 (2003)

    Google Scholar 

  25. Tóth, C.D.: Binary Space Partitions for Line Segments with a Limited Number of Directions. SIAM J. Comput. 32, 307–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Thibault, W.C., Naylor, B.F.: Set operations on polyhedra using binary space partitioning trees. Comput. Graph. 21(4), 153–162 (1987); Proc. SIGGRAPH 1987

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Berg, M., Streppel, M. (2004). Approximate Range Searching Using Binary Space Partitions. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics