Integral Trees: Subtree Depth and Diameter

  • Walter G. Kropatsch
  • Yll Haxhimusa
  • Zygmunt Pizlo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


Regions in an image graph can be described by their spanning tree. A graph pyramid is a stack of image graphs at different granularities. Integral features capture important properties of these regions and the associated trees. We compute the depth of a rooted tree, its diameter and the center which becomes the root in the top-down decomposition of a region. The integral tree is an intermediate representation labeling each vertex of the tree with the integral feature(s) of the subtree. Parallel algorithms efficiently compute the integral trees for subtree depth and diameter enabling local decisions with global validity in subsequent top-down processes.


Span Tree Travelling Salesman Problem Integral Feature Integral Image Dual Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Viola, P., Jones, M.: Robust Real-time Face Detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  2. 2.
    Beleznai, C., Frühstück, B., Bischof, H., Kropatsch, W.G.: Detecting Humans in Groups using a Fast Mean Shift Procedure. OCG-Schriftenreihe 179, 71–78 (2004)Google Scholar
  3. 3.
    Kropatsch, W.G.: Building Irregular Pyramids by Dual Graph Contraction. IEE-Proc. Vision, Image and Signal Processing 142, 366–374 (1995)CrossRefGoogle Scholar
  4. 4.
    Christofides, N.: The Traveling Salesman Problem. John Wiley and Sons, Chichester (1985)Google Scholar
  5. 5.
    Graham, S.M., Joshi, A., Pizlo, Z.: The Travelling Salesman Problem: A Hierarchical Model. Memory & Cognition 28, 1191–1204 (2000)CrossRefGoogle Scholar
  6. 6.
    Pizlo, Z., Li, Z.: Graph Pyramids as Models of Human Problem Solving. In: Proc. of SPIE-IS&T Electronic Imaging, Computational Imaging, vol. 5299, pp. 205–215 (2004)Google Scholar
  7. 7.
    Humphrey, G.: Directed Thinking. Dodd, Mead (1948)Google Scholar
  8. 8.
    Pizlo, Z.: Perception Viewed as an Inverse Problem. Vis. Res. 41, 3145–3161 (2001)CrossRefGoogle Scholar
  9. 9.
    Pizlo, Z., Rosenfeld, A., Epelboim, J.: An Exponential Pyramid Model of the Time-course of Size Processing. Vision Research 35, 1089–1107 (1995)CrossRefGoogle Scholar
  10. 10.
    Koffka, K.: Principles of Gestalt Psychology. Harcourt, New York (1935)Google Scholar
  11. 11.
    Borgefors, G.: Distance Transformation in Arbitrary Dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  12. 12.
    Borgefors, G.: Distance Transformation in Digital Images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  13. 13.
    Kropatsch, W.G.: Equivalent Contraction Kernels to Build Dual Irregular Pyramids. Advances in Computer Vision, pp. 99–107. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Kropatsch, W.G., Saib, M., Schreyer, M.: The Optimal Height of a Graph Pyramid. OCG-Schriftenreihe 160, 87–94 (2002)Google Scholar
  15. 15.
    Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z.: Integral Trees: Subtree Depth and Diameter. Technical Report No. 92, PRIP, Vienna University of Technology (2004)Google Scholar
  16. 16.
    Bister, M., Cornelis, J., Rosenfeld, A.: A Critical View of Pyramid Segmentation Algorithms. Pattern Recognition Letters 11, 605–617 (1990)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Walter G. Kropatsch
    • 1
  • Yll Haxhimusa
    • 1
  • Zygmunt Pizlo
    • 2
  1. 1.Institute of Computer Aided AutomationVienna University of TechnologyViennaAustria
  2. 2.Department of Psychological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations