Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures

  • David N. R. McKinnon
  • Brian C. Lovell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


This paper explores the combinatorial aspects of symmetric and anti-symmetric forms represented in tensor algebra. The development of geometric perspective gained from tensor algebra has resulted in the discovery of a novel projection operator for the Chow form of a curve in ℙ3 with applications to computer vision.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cayley, A.: On a new analytical representation of curves in space. Quart. J. of Pure and Appl. Math. 3 (1860)Google Scholar
  2. 2.
    Cayley, A.: On a new analytical representation of curves in space ii. Quart. J. Math. 5 (1862)Google Scholar
  3. 3.
    Chow, W., van der Waerden, B.: Zur algebraische geometrie ix. Math. Ann. 113, 692–704 (1937)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cross, G.: Surface Reconstruction from Image Sequences: Texture and Apparent Contour Constraints. PhD thesis, University of Oxford, Trinity College (2000)Google Scholar
  5. 5.
    Faugeras, O.D., Mourrain, B.: On the geometry and algebra of the point and line correspondences between N images. In: Int. Conf. on Computer Vision, pp. 951–956 (1995)Google Scholar
  6. 6.
    Gelfand, I.M., Kapranov, M.M., Zelvinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Basel (1994)zbMATHCrossRefGoogle Scholar
  7. 7.
    Greub, W.: Multilinear Algebra. Springer, Heidelberg (1978)zbMATHGoogle Scholar
  8. 8.
    Grosshans, F.D.: Invariant theory and superalgebras. Regional conference series in mathematics, vol. 69. America Mathematical Society (1987)Google Scholar
  9. 9.
    Harris, J.: Algebraic Geometry, A first course, 1st edn. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  10. 10.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Kahl, F., Heyden, A.: Using conic correspondences in two images to estimate the epipolar geometry. In: Int. Conf. on Computer Vision (1998)Google Scholar
  12. 12.
    Kaminski, J.Y., Fryers, M., Shashua, A., Teicher, M.: Multiple view geometry of non-planar algebraic curves. In: Int. Conf. on Computer Vision (2001)Google Scholar
  13. 13.
    McKinnon, D.N., Lovell, B.C.: Towards closed form solutions to the multiview constraints of curves and surfaces. In: DICTA 2003, pp. 519–528 (2003)Google Scholar
  14. 14.
    Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms and Symmetric Functions. Graduate Texts in Mathematics, vol. 203. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  15. 15.
    Sturmfels, B.: Algorithms in Invariant Theory. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  16. 16.
    Triggs, B.: The geometry of projective reconstruction i: Matching constraints and the joint image. In: Int. Conf. on Computer Vision, pp. 338–343 (1995)Google Scholar
  17. 17.
    White, N.: Geometric applications of the grassmann-cayley algebra. Handbook of Discrete and Computational Geometry, 881–892 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • David N. R. McKinnon
    • 1
  • Brian C. Lovell
    • 1
  1. 1.Intelligent Real-Time Imaging and Sensing (IRIS) Group, School of Information Technology and Electrical EngineeringUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations