Comparison of Nonparametric Transformations and Bit Vector Matching for Stereo Correlation

  • Bogusław Cyganek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


The paper describes and compares stereo matching methods based on nonparametric image transformations. The new nonparametric measures for local neighborhoods of pixels are proposed as well. These are extensions to the well known Census transformation, successively used in many computer vision tasks. The resulting bit-fields are matched with the binary vectors comparison measures: Hamming, Tanimoto and Dixon-Koehler. The presented algorithms require only integer arithmetic what makes them very useful for real-time applications and hardware implementations. Many experiments with the presented techniques, employed to the stereovision, showed their robustness and competing execution times.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks, J., Bennamoun, M., Corke, P.: Non-Parametric Techniques for Fast and Robust Stereo Matching. CSIRO Manufacturing Science and Technology, Australia (1997)Google Scholar
  2. 2.
    Bhat, D.N., Nayar, S.K.: Ordinal Measures for Image Correspondence. IEEE Transaction on Pattern Analysis and Machine Intelligence 20(4) (1998)Google Scholar
  3. 3.
    Cyganek, B.: Neural Networks Application to The Correlation-Based Stereo-Images Matching. In: Proceedings of the 5th International Conference on Engineering Applications of Neural Networks EANN 1999, Warsaw, Poland, pp. 17–22 (1999)Google Scholar
  4. 4.
    Cyganek, B., Borgosz, J.: A Comparative Study of Performance and Implementation of Some Area-Based Stereo Algorithms. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 709–716. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Cyganek, B.: Three Dimensional Image Processing, EXIT Warsaw (2002) (in Polish)Google Scholar
  6. 6.
    Cyganek, B., Borgosz, J.: An Object-Oriented Software Platform for Examination of Algorithms for Image Processing and Compression. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2658, pp. 713–720. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cyganek, B., Borgosz, J.: Fuzzy Nonparametric Measures for Image Matching. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 712–717. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Dixon, S.L., Koehler, R.T.: J. Med. Chem. 42, 2887–2900 (1999)Google Scholar
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester (2001)zbMATHGoogle Scholar
  10. 10.
    Fua, P.: A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image Features, INRIA Technical Report No 1369 (1991)Google Scholar
  11. 11.
    Fusiello, A., et al.: Efficient stereo with multiple windowing. In: CVPR, pp. 858–863 (1997)Google Scholar
  12. 12.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. In: CUP (2000)Google Scholar
  13. 13.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1999)Google Scholar
  14. 14.
    Sloan Jr., K.R., Tanimoto, S.L.: Progressive Refinement of Raster Images. IEEE Transactions on Computers 28(11), 871–874 (1979)CrossRefGoogle Scholar
  15. 15.
    Zabih, R., Woodfill, J.: Non-Parametric Local Transforms for Computing Visual Correspondence. In: Proc. Third European Conf. Computer Vision, pp. 150–158 (1994)Google Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhengping, J.: On the Mutli-Scale Iconic Representation for Low-Level Computer Vision. Ph.D. Thesis. The Turing Institute and University of Strathclyde, pp. 114–118 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bogusław Cyganek
    • 1
  1. 1.AGH – University of Science and TechnologyKrakówPoland

Personalised recommendations