Discrete Surfaces Segmentation into Discrete Planes

  • Isabelle Sivignon
  • Florent Dupont
  • Jean-Marc Chassery
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


This paper is composed of two parts. In the first one, we present an analysis of existing discrete surface segmentation algorithms. We show that two classes of algorithms can actually be defined according to discrete surface and plane definitions. In the second part, we prove the link between the two classes presented. To do so, we propose a new labelling of the surface elements which leads to a segmentation algorithm of the first class that can be easily transformed into a segmentation algorithm of the second class.


Segmentation Algorithm Surface Element Euclidean Plane Object Surface Directional Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 425–434. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 356–366. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Papier, L.: Polyédrisation et visualisation d’objets discrets tridimensionnels. PhD thesis, Université Louis Pasteur, Strasbourg, France (1999)Google Scholar
  4. 4.
    Perroton, L.: Segmentation parallèle d’images volumiques. PhD thesis, Ecole Normale Supérieure de Lyon, Lyon, France (1994)Google Scholar
  5. 5.
    Udupa, J.K., Srihari, S.N., Herman, G.T.: Boundary detection in multidimension. IEEE Trans. on Pattern Anal. and Mach. Intell. 4, 41–50 (1982)CrossRefGoogle Scholar
  6. 6.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Information and Control 51, 227–247 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Malgouyres, R.: A new definition of surfaces of ℤ3. A new 3D Jordan theorem. Theoretical Computer Science 186, 1–41 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bertrand, G., Malgouyres, R.: Some topological properties of discrete surfaces. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 325–336. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Brimkov, V., Klette, R.: Curves, surfaces and good pairs. Technical Report CITR-TR-144, CITR, Auckland, NZ (2004)Google Scholar
  10. 10.
    Kovalevsky, V.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 46, 141–161 (1989)CrossRefGoogle Scholar
  11. 11.
    Herman, G.T.: Discrete multidimenional jordan surfaces. Computer Vision, Graphics and Image Processing 54, 507–515 (1992)Google Scholar
  12. 12.
    Artzy, E., Frieder, G., Hreman, G.T.: The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Computer Graphics and Image Processing 15, 1–24 (1981)CrossRefGoogle Scholar
  13. 13.
    Gordon, D., Udupa, J.K.: Fast surface tracking in three-dimensional binary images. Computer Vision, Graphics and Image Processing 45, 196–214 (1989)CrossRefGoogle Scholar
  14. 14.
    Udupa, J.K.: Multidimensional digital boundaries. Computer Vision, Graphics and Image Processing 56, 311–323 (1994)Google Scholar
  15. 15.
    Perroton, L.: A new 26-connected objects surface tracking algorithm and its related pram version. Journal of Pattern Recognition and Artificial Intelligence 9, 719–734 (1995)CrossRefGoogle Scholar
  16. 16.
    Réveillès, J.P.: Géomètrie discréte, calcul en nombres entiers et algorithmique. Thse d’etat, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  17. 17.
    Andrès, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59, 302–309 (1997)CrossRefGoogle Scholar
  18. 18.
    Brimkov, V., Coeurjolly, D., Klette, R.: Digital Planarity - A Review. Technical Report CITR-TR-142, CITR, Auckland, NZ (2004)Google Scholar
  19. 19.
    Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. PhD thesis, Université Louis Pasteur, Strasbourg, France (1995)Google Scholar
  20. 20.
    Vittone, J.: Caractérisation et reconnaissance de droites et de plans en géométrie discrète. PhD thesis, Université Joseph Fourier, Grenoble, France (1999)Google Scholar
  21. 21.
    Vittone, J., Chassery, J.M.: (n − m)-cubes and farey nets for naive planes understanding. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 76–87. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Vittone, J., Chassery, J.M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Françon, J.: Sur la topologie d’un plan arithmétique. Theoretical Computer Science 156, 159–176 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Coeurjolly, D., Guillaume, A., Sivignon, I.: Reversible discrete volume polyhedrization using marching cubes simplification. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Vision Geometry XII, San Jose. Proceedings of SPIE, vol. 5300, pp. 1–11 (2004)Google Scholar
  25. 25.
    Groen, F.C.A., Verbeek, P.W.: Freeman-coe probabilities of object boundary quantized contours. Computer Graphics and Image Processing 7, 391–402 (1978)CrossRefGoogle Scholar
  26. 26.
    Andrès, E.: Defining discrete objects for polygonalization: the standard model. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 313–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Isabelle Sivignon
    • 1
  • Florent Dupont
    • 2
  • Jean-Marc Chassery
    • 1
  1. 1.Laboratoire LIS – Institut National Polytechnique de GrenobleSt Martin d’Hères Cedex
  2. 2.Laboratoire LIRISUniversité Claude Bernard Lyon 1Villeurbanne Cedex

Personalised recommendations