Convex Functions on Discrete Sets

  • Christer O. Kiselman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


We propose definitions of digital convex sets and digital convex functions and relate them to a refined definition of digital hyperplanes.


Digital convex set digital convex function naive digital line digital hyperplane Fenchel transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eckhardt, U.: Digital lines and digital convexity. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–228. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis X + 259 p. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Hörmander, L.: Notions of Convexity, viii + 414 p. Birkhäuser, Boston (1994)Google Scholar
  4. 4.
    Melin, E.: Digital straight lines in the Khalimsky plane, Department of Mathematics, Report 2003:30. Uppsala University. Accepted for publication in Mathematica Scandinavica (2003)Google Scholar
  5. 5.
    Reveillés, J.-P.: Géométrie discréte, calcul en nombres entiers et algorithmique, p. 251. Université Louis Pasteur, Strasbourg, Thèse d’État (1991)Google Scholar
  6. 6.
    Rosenfeld, A.: Digital straight line segments. IEEE Transactions on Computers c-32(12), 1264–1269 (1974)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Rosenfeld, A., Klette, R.: Digital straightness. Electronic Notes in Theoretical Computer Science 46, 32 (2001), CrossRefGoogle Scholar
  8. 8.
    Singer, I.: Abstract Convex Analysis, xix + 491 p. John Wiley & Sons, Inc., Chichester (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christer O. Kiselman
    • 1
  1. 1.Uppsala UniversityUppsalaSweden

Personalised recommendations