Thinning by Curvature Flow

  • Atusihi Imiya
  • Masahiko Saito
  • Kiwamu Nakamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


In this paper, we define digital curvature flow for spatial digital objects. We define the principal normal vectors for points on the digital boundary of a binary spatial object. We apply the discrete curvature flow for the skeletonisation of binary objects in a space, and develop a transform which yields the curve-skeletons of binary objects in a space.


Curvature Flow Medial Axis Planar Object Original Object Curvature Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, H.: Biological shape and visual science, J. Theoretical Biology 38, 205–285 (1963)CrossRefGoogle Scholar
  2. 2.
    Rosenfeld, A.: Axial representations of shapes. CVGIP 33, 156–173 (1986)Google Scholar
  3. 3.
    Bookstein, F.L.: The line-skeleton. CVGIP 11, 137–1233 (1979)Google Scholar
  4. 4.
    Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)CrossRefGoogle Scholar
  5. 5.
    Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. CVIU 67, 261–273 (1997)Google Scholar
  6. 6.
    Giblin, P.J., Kimia, B.B.: On the local form and transitions of symmetry sets and medial axes, and shocks in 2D. In: Proceedings of ICCV, pp. 385–391 (1999)Google Scholar
  7. 7.
    Nystrom, I., Sanniti di Baja, G., Svensson, S.: Curve skeletonization by junction detection in surface skeletons. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 229–238. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Svensson, S., Nystrom, I., Sanniti di Baja, G.: Curve skeletonization of surface-like objects in 3D images guided by voxel classification. Pattern Recognition Letters 23, 1419–1426 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Sanniti di Baja, G., Svensson, S.: Surface skeletons detected on the D6 distance transform. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 387–396. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Svensson, S., Borgefors, G., Nystrom, I.: On reversible skeletonization using anchor-points from distance transforms. Journal on Visual Communication and Image Representation 10, 379–397 (1999)CrossRefGoogle Scholar
  11. 11.
    Svensson, S., Sanniti di Baja, G.: Using distance transforms to decompose 3D discrete objects. Image and Vision Computing 20, 529–540 (2002)CrossRefGoogle Scholar
  12. 12.
    Hilditch, J.C.: Linear skeletons from square cupboards. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 403–422. Edinburgh University Press, Edinburgh (1969)Google Scholar
  13. 13.
    Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  14. 14.
    Bruckstein, A.M., Shapiro, G., Shaked, D.: Evolution of planar polygons. Journal of Pattern Recognition and Artificial Intelligence 9, 991–1014 (1995)CrossRefGoogle Scholar
  15. 15.
    Imiya, A., Eckhardt, U.: Discrete curvature flow. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 477–483. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Imiya, A., Eckhardt, U.: The Euler characteristics of discrete objects and discrete quasi-objects. CVIU 75, 307–318 (1999)Google Scholar
  17. 17.
    Imiya, A., Saito, M., Tatara, K., Nakamura, K.: Digital curvature flow and its application to skeletonization. Journal of Mathematical Imaging and Vision 18, 55–68 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Imiya, A., Eckhardt, U.: Discrete curvature flow. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 477–483. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 46, 141–161 (1989)CrossRefGoogle Scholar
  20. 20.
    Françon, J.: Sur la topologie d’un plan arithmétique. Theoretical Computer Sciences 156, 159–176 (1996)zbMATHCrossRefGoogle Scholar
  21. 21.
    Toriwak, J.-I.: Digital Image Processing for Computer Vision, vol. 1, 2. Sokodo, Tokyo (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Atusihi Imiya
    • 1
  • Masahiko Saito
    • 2
  • Kiwamu Nakamura
    • 2
  1. 1.IMITChiba University 
  2. 2.School of Science and TechnologyChiba UniversityChibaJapan

Personalised recommendations