A Comparison of Property Estimators in Stereology and Digital Geometry

  • Yuman Huang
  • Reinhard Klette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


We consider selected geometric properties of 2D or 3D sets, given in form of binary digital pictures, and discuss their estimation. The properties examined are perimeter and area in 2D, and surface area and volume in 3D. We evaluate common estimators in stereology and digital geometry according to their multiprobe or multigrid convergence properties, and precision and efficiency of estimations.


Property Estimator Digital Picture Line Probe Digital Geometry Surface Area Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators. In: Proc. ICPR, vol. IV, pp. 330–334 (2002)Google Scholar
  2. 2.
    Debled-Rennesson, I., Reveillès, J.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)CrossRefGoogle Scholar
  3. 3.
    Howard, C.V., Reed, M.G.: Unbiased Stereology: Three-Dimensional Measurement in Microscopy. BIOS Scientific Publishers, Oxford (1998)Google Scholar
  4. 4.
    Klette, R., Kovalevsky, V., Yip, B.: On the length estimation of digital curves. In: Vision Geometry VIII, Proc. of SPIE, July 1999, pp. 117–128 (1999)Google Scholar
  5. 5.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  6. 6.
    Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: Proc. 10th Intl. Conf. on Pattern Recognition, pp. 31–34 (1990)Google Scholar
  7. 7.
    Lindblad, J.: Surface area estimation of digitized planes using weighted local configurations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 348–357. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Mouton, P.R.: Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists. The Johns Hopkins University Press, Baltimore (2002)Google Scholar
  9. 9.
    Russ, J.C., Dehoff, R.T.: Practical Stereology, 2nd edn. Plenum, New York (2000)Google Scholar
  10. 10.
    Sladoje, N., Nyström, I., Saha, P.K.: Measuring perimeter and area in low resolution images using a fuzzy approach. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 853–860. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yuman Huang
    • 1
  • Reinhard Klette
    • 1
  1. 1.CITRUniversity of AucklandAucklandNew Zealand

Personalised recommendations