How to Find a Khalimsky-Continuous Approximation of a Real-Valued Function

  • Erik Melin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


Given a real-valued continuous function defined on n-dimensional Euclidean space, we construct a Khalimsky-continuous integer-valued approximation. From a geometrical point of view, thisdigitization takes a hypersurface that is the graph of a function and produces a digital hypersurface—the graph of the digitized function.


Khalimsky topology digitization discretization digital surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, P.: Diskrete Räume. Mat. Sb. 2(44), 501–519 (1937)Google Scholar
  2. 2.
    Andrès, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 1-3(65), 92–111 (2003)Google Scholar
  3. 3.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)CrossRefGoogle Scholar
  4. 4.
    Chen, L., Cooley, D.H., Zhang, J.: The equivalence between two definitions of digital surfaces. Inform. Sci. 115(1-4), 201–220 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical Models and Image Processing 57(6), 453–461 (1995)CrossRefGoogle Scholar
  6. 6.
    Couprie, M., Bertrand, G., Kenmochi, Y.: Discretization in 2D and 3D orders. Graphical Models 65(1-3), 77–91 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Herman, G.T.: Geometry of digital spaces. In: Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (1998)Google Scholar
  8. 8.
    Kaufman, A.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces and volumes. Computer Graphics 21(4), 171–179 (1987)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36(1), 1–17 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kim, C.E.: Three-dimensional digital planes. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6(5), 639–645 (1984)Google Scholar
  11. 11.
    Kiselman, C.O.: Digital geometry and mathematical morphology. Lecture notes. Uppsala University (2002), Available at
  12. 12.
    Kong, T.Y.: The Khalimsky topologies are precisely those simply connected topologies on ℤn whose connected sets include all 2n-connected sets but no (3n− 1)-disconnected sets. Theoret. Comput. Sci. 305(1-3), 221–235 (2003)Google Scholar
  13. 13.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Comput. Vision Graph. Image Process. 48(3), 357–393 (1989)CrossRefGoogle Scholar
  14. 14.
    Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Amer. Math. Monthly 98(10), 901–917 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Melin, E.: Digital straight lines in the Khalimsky plane. To appear in Mathematica Scandinavica (2003a)Google Scholar
  16. 16.
    Melin, E.: Extension of continuous functions in digital spaces with the Khalimsky topology. U.U.D.M. Report 2003:29. Uppsala University (2003b), Available at
  17. 17.
    Melin, E.: Continuous extension in topological digital spaces. U.U.D.M. Report 2004:2. Uppsala University (2004)Google Scholar
  18. 18.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Inform. and Control 51(3), 227–247 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991)Google Scholar
  20. 20.
    Ronse, C., Tajine, M.: Discretization in Hausdorff space. J. Math. Imaging Vision 12(3), 219–242 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rosenfeld, A.: Digital straight line segments. IEEE Trans. Computers  C-23(12), 1264–1269 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. CVGIP: Graph. Models Image Process. 53(4), 305–312 (1991)zbMATHCrossRefGoogle Scholar
  23. 23.
    Tajine, M., Ronse, C.: Topological properties of Hausdorff discretization, and comparison to other discretization schemes. Theoret. Comput. Sci. 283(1), 243–268 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Erik Melin
    • 1
  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations