Jordan Surfaces in Discrete Antimatroid Topologies

  • Ralph Kopperman
  • John L. Pfaltz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


In this paper we develop a discrete, T 0 topology in which (1) closed sets play a more prominent role than open sets, (2) atoms comprising the space have discrete dimension, which (3) is used to define boundary elements, and (4) configurations within the topology can have connectivity (or separation) of different degrees.

To justify this discrete, closure based topological approach we use it to establish an n-dimensional Jordan surface theorem of some interest. As surfaces in digital imagery are increasingly rendered by triangulated decompositions, this kind of discrete topology can replace the highly regular pixel approach as an abstract model of n-dimensional computational geometry.


Closure Operator Discrete Topology Geometric Space Geometric Topology Digital Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aurenhammer, F.: Voronoi diagrams — a survey of a fundamental geometric data structure. ACM Computer Surveys 23(3), 345–406 (1991)CrossRefGoogle Scholar
  2. 2.
    Hall, D.W., Spencer, G.L.: Elementary Topology. Wiley, New York (1955)zbMATHGoogle Scholar
  3. 3.
    Herman, G.T.: Geometry of Digital Spaces. Birkäuser, Boston (1998)zbMATHGoogle Scholar
  4. 4.
    Jamison, R.E., Pfaltz, J.L.: Closure Spaces that are not Uniquely Generated. In: Ordinal and Symbolic Data Analysis, OSDA 2000, Brussels, Belgium (July 2000)Google Scholar
  5. 5.
    Kelley, J.L.: General Topology. Van Nostrand (1955)Google Scholar
  6. 6.
    Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer Graphics and Connected Topologies on Finite Ordered Sets. Topology and its Applications 36, 1–17 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kong, T.Y., Kopperman, R., Meyer, P.R.: A Topological Approach to Digital Topology. Am. Math. Monthly 98(10), 901–917 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan Surface Theorem for Three-dimensional Digital Spaces. Discrete and Computational Geometry 6, 155–161 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer, Berlin (1991)zbMATHGoogle Scholar
  10. 10.
    Kuratowski, K.: Introduction to Set Theory and Topology. Pergamon Press, Oxford (1972)Google Scholar
  11. 11.
    Pfaltz, J.L.: Closure Lattices. Discrete Mathematics 154, 217–236 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rosenfeld, A.: Picture processing by computer. ACM Computer Surveys 1(3) (September 1969)Google Scholar
  13. 13.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic, New York (1982)Google Scholar
  14. 14.
    Rosenfeld, A., Pfaltz, J.L.: Distance Functions on Digital Pictures. Pattern Recog. 1(1), 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Smith, C., Prusinkiewicz, P., Samavati, F.: Local Specification of Surface Subdivision Algorithms. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 313–328. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ralph Kopperman
    • 1
  • John L. Pfaltz
    • 2
  1. 1.City University of New YorkNew York
  2. 2.University of VirginiaCharlottesville

Personalised recommendations