A Maximum Set of (26,6)-Connected Digital Surfaces

  • J. C. Ciria
  • A. De Miguel
  • E. Domínguez
  • A. R. Francés
  • A. Quintero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


In the class \(\mathcal{H}\) of (26,6)–connected homogeneous digital spaces on R 3 we find a digital space E U with the largest set of digital surfaces in that class. That is, if a digital objet S is a digital surface in any space \(E \epsilon \mathcal{H}\) then S is a digital surface in E U too.


Digital Object Index Theorem Device Model Adjacency Pair Simplicial Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Digital Lighting Functions. LNCS, vol. 1347, pp. 139–150 (1997)Google Scholar
  2. 2.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: A Digital Index Theorem. Int. J. Patter Recog. Art. Intell. 15(7), 1–22 (2001)Google Scholar
  3. 3.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Weak Lighting Functions and Strong 26-surfaces. Theoretical Computer Science 283, 29–66 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertrand, G., Malgouyres, R.: Some Topological Properties of Surfaces in ℤ3. Jour. of Mathematical Imaging and Vision. 11, 207–221 (1999)Google Scholar
  5. 5.
    Ciria, J.C., Domínguez, E., Francés, A.R.: Separation Theorems for Simplicity 26-surfaces. LNCS, vol. 2301, pp. 45–56 (2002)Google Scholar
  6. 6.
    Couprie, M., Bertrand, G.: Simplicity Surfaces: a new definition of surfaces in ℤ3. SPIE Vision Geometry V. 3454, 40–51 (1998)Google Scholar
  7. 7.
    Kong, T.Y., Roscoe, A.W.: Continuous Analogs of Axiomatized Digital Surfaces. Comput. Vision Graph. Image Process. 29, 60–86 (1985)CrossRefGoogle Scholar
  8. 8.
    Malandain, G., Bertrand, G., Ayache, N.: Topological Segmentation of Discrete Surfaces. Int. Jour. of Computer Vision 10(2), 183–197 (1993)CrossRefGoogle Scholar
  9. 9.
    Maunder, C.R.F.: Algebraic Topology. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  10. 10.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three–dimensional Digital Images. Inform. Control. 51, 227–247 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. In: Ergebnisse der Math., vol. 69. Springer, Heidelberg (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. C. Ciria
    • 1
  • A. De Miguel
    • 1
  • E. Domínguez
    • 1
  • A. R. Francés
    • 1
  • A. Quintero
    • 2
  1. 1.Dpt. de Informática e Ingeniería de Sistemas, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.Dpt. de Geometría y Topología, Facultad de MatemáticasUniversidad de SevillaSevillaSpain

Personalised recommendations