On the Number of Digitizations of a Disc Depending on Its Position

  • Martin N. Huxley
  • Joviša Žunić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)


The digitization D(R,(a,b)) of a real disc D(R, (a ,b)) having radius R and the centre (a, b) consists of all integer points inside of D(R, (a,b)), i.e., \(D(R,(a,b))=D(R,(a,b))\cap \mathcal{Z}^{2}\). In this paper we show that that there are

3πR 21O(R 339/208 ·(log R)18627/8320)

different (up to translations) digitizations of discs having the radius R. More formally,

#D(R, (a, b)) | a and b vary through [0, 1)

3πR 21O(R 339/208 ·(log R)18627/8320)

The result is of an interest in the area of digital image processing because it describes (in, let say, a combinatorial way) how big the impact of the object position on its digitization can be.


Digital disc lattice points enumeration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corteel, S., Rémond, G., Schaeffer, G., Thomas, H.: The Number of Plane Corner Cuts. Advances in Applied Mathematics 23, 49–53 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fisk, S.: Separating point sets by circles, and the recognition of digital discs. IEEE Trans. on Pattern Analysis and Machine Intelligence 8, 554–556 (1984)CrossRefGoogle Scholar
  3. 3.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford University Press, Oxford (1959)Google Scholar
  4. 4.
    Huxley, M.N.: Area, Lattice Points, and Exponential Sums. London Math. Soc. Monographs 13 (1996)Google Scholar
  5. 5.
    Huxley, M.N.: Exponential Sums and Lattice Points III. Proc. London Math. Soc. 87, 591–609 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. Journal of Mathematical Imaging and Vision 13, 173–191 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Krätzel, E.: Lattice Points. VEB Deutscher Verlag der Wissenschaften, Berlin (1988)zbMATHGoogle Scholar
  8. 8.
    Koplowitz, J., Lindenbaum, M., Bruckstein, A.: On the number of digital straight lines on a squared grid. IEEE Trans. Information Theory 15, 949–953 (1993)Google Scholar
  9. 9.
    Lindenbaum, M., Koplowitz, J.: A new parametrization of digital straight lines. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 847–852 (1991)CrossRefGoogle Scholar
  10. 10.
    Wagner, U.: On the Number of Corner Cuts. Advances in Applied Mathematics 29, 152–161 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Žunić, J.: Cutting Corner with Spheres in d-dimensions. Advances in Applied Mathematics 32, 609–614 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Žunić, J.: On the Number of Digital Discs. Journal of Mathematical Imaging and Vision (accepted)Google Scholar
  13. 13.
    Žunić, J., Sladoje, N.: Efficiency of Characterizing Ellipses and Ellipsoids by Discrete Moments. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 407–414 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Martin N. Huxley
    • 1
  • Joviša Žunić
    • 2
  1. 1.School of MathematicsCardiff UniversityCardiffU.K.
  2. 2.Computer Science DepartmentExeter UniversityExeterU.K.

Personalised recommendations