Advertisement

IWCIA 2004: Combinatorial Image Analysis pp 219-231

# On the Number of Digitizations of a Disc Depending on Its Position

• Martin N. Huxley
• Joviša Žunić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

## Abstract

The digitization D(R,(a,b)) of a real disc D(R, (a ,b)) having radius R and the centre (a, b) consists of all integer points inside of D(R, (a,b)), i.e., $$D(R,(a,b))=D(R,(a,b))\cap \mathcal{Z}^{2}$$. In this paper we show that that there are

3πR 21O(R 339/208 ·(log R)18627/8320)

different (up to translations) digitizations of discs having the radius R. More formally,

#D(R, (a, b)) | a and b vary through [0, 1)

3πR 21O(R 339/208 ·(log R)18627/8320)

The result is of an interest in the area of digital image processing because it describes (in, let say, a combinatorial way) how big the impact of the object position on its digitization can be.

## Keywords

Digital disc lattice points enumeration

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Corteel, S., Rémond, G., Schaeffer, G., Thomas, H.: The Number of Plane Corner Cuts. Advances in Applied Mathematics 23, 49–53 (1999)
2. 2.
Fisk, S.: Separating point sets by circles, and the recognition of digital discs. IEEE Trans. on Pattern Analysis and Machine Intelligence 8, 554–556 (1984)
3. 3.
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford University Press, Oxford (1959)Google Scholar
4. 4.
Huxley, M.N.: Area, Lattice Points, and Exponential Sums. London Math. Soc. Monographs 13 (1996)Google Scholar
5. 5.
Huxley, M.N.: Exponential Sums and Lattice Points III. Proc. London Math. Soc. 87, 591–609 (2003)
6. 6.
Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. Journal of Mathematical Imaging and Vision 13, 173–191 (2000)
7. 7.
Krätzel, E.: Lattice Points. VEB Deutscher Verlag der Wissenschaften, Berlin (1988)
8. 8.
Koplowitz, J., Lindenbaum, M., Bruckstein, A.: On the number of digital straight lines on a squared grid. IEEE Trans. Information Theory 15, 949–953 (1993)Google Scholar
9. 9.
Lindenbaum, M., Koplowitz, J.: A new parametrization of digital straight lines. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 847–852 (1991)
10. 10.
Wagner, U.: On the Number of Corner Cuts. Advances in Applied Mathematics 29, 152–161 (2002)
11. 11.
Žunić, J.: Cutting Corner with Spheres in d-dimensions. Advances in Applied Mathematics 32, 609–614 (2004)
12. 12.
Žunić, J.: On the Number of Digital Discs. Journal of Mathematical Imaging and Vision (accepted)Google Scholar
13. 13.
Žunić, J., Sladoje, N.: Efficiency of Characterizing Ellipses and Ellipsoids by Discrete Moments. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 407–414 (2000)

## Copyright information

© Springer-Verlag Berlin Heidelberg 2004

## Authors and Affiliations

• Martin N. Huxley
• 1
• Joviša Žunić
• 2
1. 1.School of MathematicsCardiff UniversityCardiffU.K.
2. 2.Computer Science DepartmentExeter UniversityExeterU.K.

## Personalised recommendations

### Citepaper 