A Model That Captures Receptive Field Properties of Orientation Selective Neurons in the Visual Cortex

  • Basabi Bhaumik
  • Alok Agarwal
  • Mona Mathur
  • Manish Manohar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)


A purely feedforward model has been shown to produce realistic simple cell receptive fields (RFs). The modeled cells capture a wide range of receptive field properties of orientation selective cortical cells in the primary visual cortex. We have analyzed the responses of 72 nearby cell pairs to study which RF properties are clustered. Orientation preference shows strongest clustering and RF phase the least clustering. Our results agree well with experimental data (DeAngelis et al, 1999, Swindale et al, 2003).


visual cortex orientation selectivity receptive field neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhaumik, B., Mathur, M.: A Cooperation and Competition Based Simple Cell Receptive Field Model and Study of Feed-Forward Linear and Nonlinear Contributions to Orientation Selectivity. Journal of Computational Neuroscience 14, 211–227 (2003)CrossRefGoogle Scholar
  2. 2.
    Blasdel, G.: Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12, 3139–3161 (1992)Google Scholar
  3. 3.
    Bonhoeffer, T.: Neurotrophins and activity dependent development of the neocortex. Curr.: Opin. Neurobiol 6, 119–126 (1996)CrossRefGoogle Scholar
  4. 4.
    Carandini, M., Heeger, D.: Summation and division by neurons in the visual cortex. Science 264, 1333–1336 (1994)CrossRefGoogle Scholar
  5. 5.
    DeAngelis, G.C., Ghose, G.M., Ohzawa, I., Freeman, R.: Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. Journal of Neuroscience 19, 4046–4064 (1999)Google Scholar
  6. 6.
    Douglas, R.J., Koch, C., Mahowald, M., Martin, K.A.C., Suarez, H.: Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995)CrossRefGoogle Scholar
  7. 7.
    Ferster, D.: Origin of orientation selective EPSPs in simple cells of the cat visual cortex. Journal of Neuroscience 7, 1780–1791 (1987)Google Scholar
  8. 8.
    Freeman, R.: Cortical columns: A multi-parameter examination. Cereb Cortex 13, 70–72 (2003)CrossRefGoogle Scholar
  9. 9.
    Gerstner, W.: Spiking Neurons. In: Mass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, pp. 3–54. MIT Press, Cambridge (1999); Grinvald, A, Lieke, E, Frostig, R.D., Gilbert, C.D, Wiesel, T.N.: Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, Vol. 324, pp. 361-364 (1986)Google Scholar
  10. 10.
    Hubel, D.H., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160, 106–154 (1962)Google Scholar
  11. 11.
    Koch, C., Poggio, T.: The synaptic veto mechanism: does it underlie direction and orientation selectivity in the visual cortex? In: Rose, D.R., Dobson, V.G. (eds.) Models of the visual cortex, pp. 408–419. John Wiley, New York (1985)Google Scholar
  12. 12.
    Linsker, R.: From basic network principles to neural architecture: Emergence of spatialopponent cells. In: Proceedings of National Academy of Sciences, USA, vol. 83, pp. 7508–7512 (1986)Google Scholar
  13. 13.
    Maldonado, P.E., Gödecke, I., Gray, C.M., Bonhoeffer, T.: Orientation selectivity in pinwheel centers in cat striate cortex. Science 276, 1551–1555 (1997)CrossRefGoogle Scholar
  14. 14.
    Miller, K.: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON and OFF center inputs. Journal of Neuroscience 14, 409–441 (1994)Google Scholar
  15. 15.
    Somers, D.C., Nelson, S.B., Sur, M.: An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience 15, 5448–5465 (1995)Google Scholar
  16. 16.
    Swindale, N.V.: Spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. Cerebral Cortex 13, 225–238 (2003)CrossRefGoogle Scholar
  17. 17.
    Von der Malsburg, C.: Self Organization of orientation selective cells in the striate cortex. Kybernetik 14, 85–100 (1973)CrossRefGoogle Scholar
  18. 18.
    Wörgötter, F., Koch, C.: A detailed model of the primary visual pathway in the cat: Comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. Journal of Neuroscience 11(7), 1959–1979 (1991)Google Scholar
  19. 19.
    Xiong, M., Pallas, S.L., Lim, S., Finlay, B.: Regulation of retinal ganglion cell axon arbor size by target availability: Mechanism of compression and expansion of the retinotectal projection. J. Comp. Neurol 344, 581–597 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Basabi Bhaumik
    • 1
  • Alok Agarwal
    • 1
  • Mona Mathur
    • 1
  • Manish Manohar
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology, DelhiNew DelhiIndia

Personalised recommendations