Packing Bins Using Multi-chromosomal Genetic Representation and Better-Fit Heuristic

  • A. K. Bhatia
  • S. K. Basu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)


We propose a multi-chromosome genetic coding and set-based genetic operators for solving bin packing problem using genetic algorithm. A heuristic called better-fit is proposed, in which a left-out object replaces an existing object from a bin if it can fill the bin better. Performance of the genetic algorithm augmented with the better-fit heuristic has been compared with that of hybrid grouping genetic algorithm (HGGA). Our method has provided optimal solutions at highly reduced computational time for the benchmark uniform problem instances used. The better-fit heuristic is more effective compared to the best-fit heuristic when combined with the coding.


Genetic Algorithm Bin Packing Problem Heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. Journal of Operational Research Society 41(11), 1069–1072 (1990)Google Scholar
  2. 2.
    Coffman Jr, E.G., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: combinatorial analysis. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  3. 3.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)CrossRefGoogle Scholar
  4. 4.
    Falkenauer, E.: A hybrid genetic algorithm for bin packing. Journal of Heuristics 2(1), 5–30 (1996)CrossRefGoogle Scholar
  5. 5.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley & Sons, Chichester (1998)Google Scholar
  6. 6.
    Falkenauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. In: Proc. IEEE Int. Conf. on Robotics and Automation, France, pp. 1186–1192 (1992)Google Scholar
  7. 7.
    Fekete, S.P., Schepers, J.: New classes of fast lower bounds for bin packing problem. Mathematical Programming Series A 91(1), 11–31 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)zbMATHGoogle Scholar
  9. 9.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics 28, 59–70 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Reeves, C.: Hybrid genetic algorithms for bin-packing and related problems. Annals of Operations Research 63, 371–396 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. K. Bhatia
    • 1
  • S. K. Basu
    • 1
  1. 1.Department of Computer ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations