Advertisement

Extending the SOM Algorithm to Non-Euclidean Distances via the Kernel Trick

  • Manuel Martín-Merino
  • Alberto Muñoz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)

Abstract

The Self Organizing Map is a nonlinear projection technique that allows to visualize the underlying structure of high dimensional data. However, the original algorithm relies on the use of Euclidean distances which often becomes a serious drawback for a number of real problems.

In this paper, we present a new kernel version of the SOM algorithm that incorporates non-Euclidean dissimilarities keeping the simplicity of the classical version. To achieve this goal, the data are nonlinearly transformed to a feature space taking advantage of Mercer kernels, while the overall data structure is preserved.

The new SOM algorithm has been applied to the challenging problem of word relation visualization. We report that the kernel SOM improves the map generated by other alternatives for certain classes of kernels.

Keywords

Feature Space Input Space High Dimensional Data Polynomial Kernel Voronoi Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional spaces. In: Proc. of the International Conference on Database Theory (ICDT), London, UK, January 2001, pp. 420–434 (2001)Google Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison- Wesley, New York (1999)Google Scholar
  3. 3.
    Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces and information retrieval. SIAM review 41(2), 335–362 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman & Hall/CRC Press, New York (2001)zbMATHGoogle Scholar
  5. 5.
    Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, ch. 6, pp. 303–315. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  6. 6.
    Kaufman, L., Rousseeuw, P.J.: Finding groups in Data; An Introduction to Cluster Analysis. John Wiley and Sons, USA (1990)Google Scholar
  7. 7.
    Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1995)Google Scholar
  8. 8.
    Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Organization of a massive document collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)CrossRefGoogle Scholar
  9. 9.
    Martín-Merino, M., Muñoz, A.: Self organizing map and sammon mapping for asymmetric proximities. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 429–435. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Mulier, F., Cherkassky, V.: Self-organization as an iterative kernel smoothing process. Neural Computation 7, 1165–1177 (1995)CrossRefGoogle Scholar
  11. 11.
    Muñoz, A.: Compound key word generation from document databases using a hierarchical clustering art model. Journal of Intelligent Data Analysis 1(1) (1997)Google Scholar
  12. 12.
    Muñoz, A.: Self-organizing Maps for outlier detection. Neurocomputing 18, 33–60 (1998)CrossRefGoogle Scholar
  13. 13.
    Ruiz, A., López de Teruel, P.E.: Nonlinear kernel-based statistical pattern analysis. IEEE Transactions on Neural Networks 12(1), 16–32 (2001)CrossRefGoogle Scholar
  14. 14.
    Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5), 1000–1017 (1999)CrossRefGoogle Scholar
  15. 15.
    Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)Google Scholar
  16. 16.
    Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering.Workshop of Artificial Intelligence forWeb Search, Austin, Texas, USA, 58-64 (July 2000)Google Scholar
  17. 17.
    Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proc. of the International Conference on Machine Learning, Nashville, Tennessee, USA, pp. 412–420 (July 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Manuel Martín-Merino
    • 1
  • Alberto Muñoz
    • 2
  1. 1.University Pontificia of SalamancaSalamancaSpain
  2. 2.University Carlos IIIGetafeSpain

Personalised recommendations