Skip to main content

Extending the SOM Algorithm to Non-Euclidean Distances via the Kernel Trick

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

The Self Organizing Map is a nonlinear projection technique that allows to visualize the underlying structure of high dimensional data. However, the original algorithm relies on the use of Euclidean distances which often becomes a serious drawback for a number of real problems.

In this paper, we present a new kernel version of the SOM algorithm that incorporates non-Euclidean dissimilarities keeping the simplicity of the classical version. To achieve this goal, the data are nonlinearly transformed to a feature space taking advantage of Mercer kernels, while the overall data structure is preserved.

The new SOM algorithm has been applied to the challenging problem of word relation visualization. We report that the kernel SOM improves the map generated by other alternatives for certain classes of kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional spaces. In: Proc. of the International Conference on Database Theory (ICDT), London, UK, January 2001, pp. 420–434 (2001)

    Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison- Wesley, New York (1999)

    Google Scholar 

  3. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces and information retrieval. SIAM review 41(2), 335–362 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman & Hall/CRC Press, New York (2001)

    MATH  Google Scholar 

  5. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, ch. 6, pp. 303–315. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  6. Kaufman, L., Rousseeuw, P.J.: Finding groups in Data; An Introduction to Cluster Analysis. John Wiley and Sons, USA (1990)

    Google Scholar 

  7. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1995)

    Google Scholar 

  8. Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Organization of a massive document collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)

    Article  Google Scholar 

  9. Martín-Merino, M., Muñoz, A.: Self organizing map and sammon mapping for asymmetric proximities. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 429–435. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Mulier, F., Cherkassky, V.: Self-organization as an iterative kernel smoothing process. Neural Computation 7, 1165–1177 (1995)

    Article  Google Scholar 

  11. Muñoz, A.: Compound key word generation from document databases using a hierarchical clustering art model. Journal of Intelligent Data Analysis 1(1) (1997)

    Google Scholar 

  12. Muñoz, A.: Self-organizing Maps for outlier detection. Neurocomputing 18, 33–60 (1998)

    Article  Google Scholar 

  13. Ruiz, A., López de Teruel, P.E.: Nonlinear kernel-based statistical pattern analysis. IEEE Transactions on Neural Networks 12(1), 16–32 (2001)

    Article  Google Scholar 

  14. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5), 1000–1017 (1999)

    Article  Google Scholar 

  15. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  16. Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering.Workshop of Artificial Intelligence forWeb Search, Austin, Texas, USA, 58-64 (July 2000)

    Google Scholar 

  17. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proc. of the International Conference on Machine Learning, Nashville, Tennessee, USA, pp. 412–420 (July 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martín-Merino, M., Muñoz, A. (2004). Extending the SOM Algorithm to Non-Euclidean Distances via the Kernel Trick. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics