The Balance Between Excitation and Inhibition Not Only Leads to Variable Discharge of Cortical Neurons but Also to Contrast Invariant Orientation Tuning

  • Akhil R. Garg
  • Basabi Bhaumik
  • Klaus Obermayer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)


The orientation tuning width of the spike response of neuron in layer V1 of primary visual cortex does not change with contrast of input signal. It is also known that cortical neurons exhibit tremendous irregularity in their discharge pattern which is conserved over large regions of cerebral cortex. To produce this irregularity in responses the neurons must receive balanced excitation and inhibition. By a modeling study we show that if this balance is maintained for all levels of contrast it results in variable discharge patterns of cortical neurons at all contrast and also in contrast invariant orientation tuning. Further, this study supports the role of inhibition in shaping the responses of cortical neurons and we also obtain changes in circular variance with changing contrast, similar to what is observed experimentally.


Cortical Neuron Cortical Cell Primary Visual Cortex Simple Cell Input Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sclar, G., Freeman, R.D.: Exp. Brain Res.  46, 457–461 (1982)Google Scholar
  2. 2.
    Anderson, J.S., Lampl, I., Gillespie, D.C., Ferster, D.: Science.  290, 1968–1972 (2000)Google Scholar
  3. 3.
    Carandini, M., Heeger, D., Movshon, J.: J Neurosci.  17, 8621–8644 (1997)Google Scholar
  4. 4.
    Ben-Yishai, R., Bar Or, R., Sompolinsky, H.: Proc. Nat. Acad Sci USA.  92, 3844–3848 (1995)Google Scholar
  5. 5.
    Somers, D., Nelson, S., Sur, M.: J. Neurosci.  15, 5448–5465 (1995)Google Scholar
  6. 6.
    Troyer, T.W., Krukowski, A.E., Priebe, N.J., Miller, K.D.: J. Neurosci.  18, 5908–5927 (1998)Google Scholar
  7. 7.
    McLaughlin, D., Shapley, R., Shelley, M., Wielaard, J.: Proc. Natl. Acad. Sci. USA.  99, 1645–1650 (2000)Google Scholar
  8. 8.
    Shadlen, M.N., Newsome, W.T.: Current Biology.  4, 569–579 (1994)Google Scholar
  9. 9.
    Shadlen, M.N., Newsome, W.T.: The Journal of Neurosci. 18, 3870–3896 (1998)Google Scholar
  10. 10.
    Hansel, D., Vreeswijk, C.: The Journal of Neurosci.  22, 5118–5128 (2002)Google Scholar
  11. 11.
    Shapley, R., Hawken, M., Ringach, D.L.: Neuron.  38, 689–699 (2003)Google Scholar
  12. 12.
    Jones, J.P., Palmer, L.A.: J. Neurophysiol.  58, 1187–1211 (1987)Google Scholar
  13. 13.
    Alitto, H.J., Usrey, W.M.: 2004 Articles. J. Neurophysiol. 10, 943–2003 (2004)Google Scholar
  14. 14.
    Song, S., Miller, K.D., Abbott, L.F.: Nature Neurosci.  3, 919–926 (2000)Google Scholar
  15. 15.
    Hirsch, J.A., Martinez, L.M., Pillai, C., Alonso, J.M., Wang, Q., Sommer, F.T.: Nature Neurosci.  12, 1300–1308 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Akhil R. Garg
    • 1
  • Basabi Bhaumik
    • 2
  • Klaus Obermayer
    • 3
  1. 1.Department of Electrical EngineeringJ.N.V. UniversityJodhpurIndia
  2. 2.Department of Electrical EngineeringI.I.T DelhiNew DelhiIndia
  3. 3.Department of Computer Science and Electrical EngineeringTechnical University BerlinGermany

Personalised recommendations