Advertisement

Neurobiological Foundation for the Meaning of Information

  • Walter J. Freeman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)

Abstract

Brains create meaning and express it in information. They select and pre-process the information carried by sensory stimuli as sense data, from which they construct meaning. They post-process cognitive meaning into informative commands that control the goal-directed actions that express meaning. Meaning exists in the interaction of subjects with their environments. The process of perception by which brains construct meaning from information can be explained by analyzing the neural activity in human and animal brains as subjects engage in meaningful behaviors. Measurement is followed by decomposition and modeling of the neural activity in order to deduce brain operations. Brains function hierarchically with neuronal interactions within and between three levels: microscopic of single neurons, mesoscopic of local networks forming modules, and macroscopic of the global self-organization of the cerebral hemispheres by the organic unity of neocortex. Information is carried in continuous streams of microscopic axonal pulses. Meaning is carried in mesoscopic local mean fields of dendritic currents in discontinuous frames resembling cinemas, each frame having a spatial pattern of amplitude modulation of an aperiodic carrier wave.

Keywords

Phase Velocity Amplitude Modulation Chaotic Attractor Gamma Oscillation Primary Sensory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 364–374 (1987)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barham, J.: A dynamical model of the meaning of information. Biosystems 38, 235–241 (1996)CrossRefGoogle Scholar
  3. 3.
    Barlow, J.S.: The Electroencephalogram: Its Patterns and Origins. MIT Press, Cambridge (1993)Google Scholar
  4. 4.
    Barrie, J.M., Freeman, W.J., Lenhart, M.D.: Spatiotemporal analysis of prepyriform, visual, auditory and somesthetic surface EEG in trained rabbits. J. Neurophysiol. 76, 520–539 (1996)Google Scholar
  5. 5.
    Destexhe, A.: Modeling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J. Physiol.-Paris 94, 91–410 (2000)Google Scholar
  6. 6.
    Edelstein-Keshet, L., Watmough, J., Grunbaum, D.: Do traveling band solutions describe cohesive swarms? An investigation for migratory locusts. J. Math. Biol. 171, 515–549 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Freeman, W.J.: Mass Action in the Nervous System. Academic Press, New York (1975)Google Scholar
  8. 8.
    Freeman, W.J.: Tutorial in Neurobiology: From Single Neurons to Brain Chaos. Int. J. Bifurc. Chaos 2, 451–482 (1992)zbMATHCrossRefGoogle Scholar
  9. 9.
    Freeman, W.J.: Neurodynamics. An Exploration of Mesoscopic Brain Dynamics. Springer, London (2000)Google Scholar
  10. 10.
    Freeman, W.: A neurobiological theory of meaning in perception. Part 1. Information and meaning in nonconvergent and nonlocal brain dynamics. Int. J. Bifurc. Chaos 13, 2493–2511 (2003a)Google Scholar
  11. 11.
    Freeman, W.: A neurobiological theory of meaning in perception. Part 2. Spatial patterns of phase in gamma EEG from primary sensory cortices measured by nonlinear wavelets. Intern J Bifurc. Chaos 13, 2513–2535 (2003b)Google Scholar
  12. 12.
    Freeman, W.: Origin, structure and role of background EEG activity. Part 1. Analytic amplitude. Clin. Neurophysiol 115, 2077–2088 (2004a)Google Scholar
  13. 13.
    Freeman, W.: Origin, structure and role of background EEG activity. Part 2. Analytic phase. Clin. Neurophysiol 115, 2089–2107 (2004)Google Scholar
  14. 14.
    Freeman, W.J., Baird, B.: Relation of olfactory EEG to behavior: Spatial analysis. Behav. Neurosci. 101, 393–408 (1987)CrossRefGoogle Scholar
  15. 15.
    Freeman, W.J., Barrie, J.M.: Analysis of spatial patterns of phase in neocortical gamma EEG in rabbit. J. Neurophysiol 84, 1266–1278 (2000)Google Scholar
  16. 16.
    Freeman, W.J., Burke, B.C., Holmes, M.D.: 248-272. Human Brain Mapping 19(4), 248–272 (2003)CrossRefGoogle Scholar
  17. 17.
    Freeman, W.J., Burke, B.C., Holmes, M.D., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114, 1055–1060 (2003)CrossRefGoogle Scholar
  18. 18.
    Freeman, W.J., Grajski, K.A.: Relation of olfactory EEG to behavior: Factor analysis. Behav. Neurosci. 101, 766–777 (1987)CrossRefGoogle Scholar
  19. 19.
    Freeman, W.J., Rogers, L.J.: Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEG. J. Neurophysiol. 87, 937–945 (2002)Google Scholar
  20. 20.
    Freeman, W.J., Rogers, L.J., Holmes, M.D., Silbergeld, D.L.: Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. 95, 111–121 (2000)Google Scholar
  21. 21.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Haughton Mifflin, Boston (1979)Google Scholar
  22. 22.
    Hecht, E., Zajac, A.: Optics, pp. 38–42. Addison-Wesley, Reading (1974)Google Scholar
  23. 23.
    Hwa, R.C., Ferree, T.: Scaling properties of fluctuations in the human electroencephalogram. Physical Rev. E 66, 21901 (2002)CrossRefGoogle Scholar
  24. 24.
    Kozma, R., Freeman, W.J.: Chaotic Resonance: Methods and applications for robust classification of noisy and variable patterns. Int. J. Bifurc. Chaos 10, 2307–2322 (2001)Google Scholar
  25. 25.
    Kozma, R., Freeman, W.J., Erdí, P.: The KIV model - Nonlinear spatiotemporal dynamics of the primordial vertebrate forebrain. Neurocomputing 52, 819–826 (2003)CrossRefGoogle Scholar
  26. 26.
    Merleau-Ponty, M.: Phenomenology of Perception (C Smith, Trans.). Humanities Press, New York (1945/1962)Google Scholar
  27. 27.
    Piaget, J.: The Child’s Conception of Physical Causality. Harcourt, Brace (1930)Google Scholar
  28. 28.
    Principe, J.C., Tavares, V.G., Harris, J.G., Freeman, W.J.: Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proc. IEEE 89, 1030–1051 (2001)CrossRefGoogle Scholar
  29. 29.
    Robinson, P.A., Wright, J.J., Rennie, C.J.: Synchronous oscillations in the cerebral cortex. Phys. Rev. E 57, 4578–4588 (1998)CrossRefGoogle Scholar
  30. 30.
    Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J.: Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Physi- cal Rev. E 6304, 41909 (2001)CrossRefGoogle Scholar
  31. 31.
    Srinivasan, R., Nunez, P.L., Silberstein, R.B.: Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans. Biomed Engin 45, 814–826 (1998)CrossRefGoogle Scholar
  32. 32.
    Steriade, M.: Corticothalamic resonance, states of vigilance and mentation. Neuro- sci. 101, 243–276 (2000)Google Scholar
  33. 33.
    Taylor, J.G.: Neural networks for consciousness. Neural Networks 10, 1207–1225 (1997)zbMATHCrossRefGoogle Scholar
  34. 34.
    Tsuda, I.: Toward an interpretation of dynamics neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–847 (2001)CrossRefGoogle Scholar
  35. 35.
    Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Trans. Circuits Syst. 31, 6–20 (2003)CrossRefGoogle Scholar
  36. 36.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small world’ networks. Nature 394, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Walter J. Freeman
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations