On Modeling MPEG Video at the Frame Level Using Self-Similar Processes

  • José C. López-Ardao
  • Pablo Argibay-Losada
  • Raúl F. Rodriguez-Rubio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3311)


MPEG video traffic is expected to represent most of the load in the future high-speed networks. Adequate traffic models for MPEG Variable Bit-Rate (VBR) video are thus important for network design, performance evaluation, admission control and resource allocation.

Many models for VBR video traffic have been proposed in the literature. However, while the GOP-level process has been widely analyzed in literature, and so the inter-GOP correlation, little effort has been devoted up to now to the frame-level processes, and so to the intra-GOP correlations, even though it is a fundamental characteristic of MPEG traffic and it might have an important impact on queueing performance.

In this work, we compare different solutions proposed in the literature to obtain MPEG frame-level processes, depending on the performance metric to study (loss rate, mean delay and jitter). Besides, we claim for the use of self-similar processes, and more concretely, Gaussian F-ARIMA(1,d,0) processes, to adequately capture the correlation structures involved in MPEG video.


Marginal Distribution Buffer Size Queue Size Video Model Frame Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beran, J., Sherman, R., Taqqu, M.S., Willinger, W.: Long-Range Dependence in Variable-Bit-Rate Video Traffic. IEEE Trans. on Comm. 43, 1566–1579 (1995)CrossRefGoogle Scholar
  2. 2.
    Garrett, M.W., Willinger, W.: Analysis, Modeling and Generation of Self-Similar VBR Video Traffic. In: Proc. of ACM SIGCOMM 1994, London, UK, pp. 269–280 (1994)Google Scholar
  3. 3.
    Huang, C., Devetsikiotis, M., Lambadaris, I., Kayevol, A.R.: Modeling and Simulation of Self-Similar Variable Bit Rate Compressed Video: A Unified Approach. In: Proc. of ACM SIGCOMM 1995, Cambridge, MA USA, pp. 114–125 (1995)Google Scholar
  4. 4.
    Rose, O.: Statistical Properties of MPEG Video Traffic and their Impact on Traffic Modeling in ATM Systems. In: Proc. of the 20th Annual Conference on Local Computer Networks, Minneapolis, MN, pp. 397–406 (1995)Google Scholar
  5. 5.
    Lombardo, A., Morabito, G., Palazzo, S., Schembra, G.: MPEG Traffic Generation Matching Intra- and Inter-GoP Correlation. Simulation 47 (2001)Google Scholar
  6. 6.
    Jelenkovic, P.R., Lazar, A.A., Semret, N.: The Effect of Multiple Time Scales and Subexponentiality of MPEG Video Streams on Queueing Behavior. IEEE Journal on Selected Areas in Communications 43, 1566–1579 (1995)Google Scholar
  7. 7.
    Frey, M., Nguyen-Quang, S.: A Gamma-Based Framework for Modeling Variable-Rate MPEG Video Sources: the GOP GBAR Model. IEEE/ACM Transactions on Networking 8, 710–719 (2000)CrossRefGoogle Scholar
  8. 8.
    Izquierdo, M.R., Reeves, D.S.: A Survey of Statistical Source Models for Variable-Bit-Rate Compressed Video. Multimedia Systems 7, 199–213 (1999)CrossRefGoogle Scholar
  9. 9.
    Heyman, D.P., Lakshman, T.V.: Source Models for VBR Broadcast-Video Traffic. IEEE/ACM Transactions on Networking 4, 40–48 (1996)CrossRefGoogle Scholar
  10. 10.
    Krunz, M., Tripathi, S.K.: On the Characterization of VBR MPEG Streams. In: Proc. of ACM SIGMETRICS 1997, Seattle, WA, pp. 192–202 (1997)Google Scholar
  11. 11.
    Ansari, N., Liu, H., Shi, Y.Q.: On Modeling MPEG Video Traffics. IEEE Transactions on Broadcasting 48, 337–347 (2002)CrossRefGoogle Scholar
  12. 12.
    Grossglauser, M., Bolot, J.-C.: On the Relevance of Long-Range Dependence in Network Traffic. In: Proc. of ACM SIGCOMM 1996, pp. 15–24. Stanford Univ., CA (1996)Google Scholar
  13. 13.
    Heyman, D.P., Lakshman, T.V.: What Are the Implications of Long-Range Dependence for VBR-Video Traffic Engineering? IEEE/ACM Transactions on Networking 4, 301–317 (1996)CrossRefGoogle Scholar
  14. 14.
    Ryu, B.K., Elwalid, A.: The Importance of Long-Range Dependence of VBR Video Traffic in ATM Traffic Engineering: Myths and Realities. In: Proc. of ACM SIGCOMM 1996, pp. 3–14. Stanford University, CA (1996)Google Scholar
  15. 15.
    López-Ardao, J.C., Suárez-González, A., López-García, C., Fernández-Veiga, M., Rodríguez-Rubio, R.: On the use of self-similar processes in network simulation. ACM Transactions on Modeling and Computer Simulation 10, 125–151 (2000)CrossRefGoogle Scholar
  16. 16.
    Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2, 1–15 (1994)CrossRefGoogle Scholar
  17. 17.
    Erramilli, A., Narayan, O., Willinger, W.: Experimental Queueing Analysis with Long–Range Dependent Packet Traffic. IEEE/ACM Transactions on Networking 4, 209–223 (1996)CrossRefGoogle Scholar
  18. 18.
    Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lombardo, A., Morabito, G., Palazzo, S., Schembra, G.: MPEG Traffic Generation Matching Intra- and Inter-GoP Correlation. Simulation 47 (2001)Google Scholar
  20. 20.
    Rose, O.: Simple and Efficient Models for Variable Bit Rate MPEG Video Traffic. Performance Evaluation 30, 69–85 (1997)CrossRefGoogle Scholar
  21. 21.
    Suárez-González, A., López-Ardao, J.C., López-García, C., Fernández-Veiga, M., Sousa Vieira, E.: A Batch Means Procedure for Mean Value Estimation of Processes Exhibiting Long Range Dependence. In: Proc. of WSC 2002, San Diego, CA (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • José C. López-Ardao
    • 1
  • Pablo Argibay-Losada
    • 1
  • Raúl F. Rodriguez-Rubio
    • 1
  1. 1.Telematics Engineering Department, ETSET TelecomunicacionUniversity of Vigo (Spain)VigoSpain

Personalised recommendations