Skip to main content

The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy

  • Conference paper
Book cover Cellular Automata (ACRI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3305))

Included in the following conference series:

Abstract

The Hybrid Cellular Automata (HCA) modelling framework can be an efficient approach to a number of biological problems, particularly those which involve the integration of multiple spatial and temporal scales. As such, HCA may become a key modelling tool in the development of the so-called integrative biology. In this paper, we first discuss HCA on a general level and then present results obtained when this approach was implemented in cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agur, Z.: Fixed points of majority rule cellular automata applied to plasticity and precision of the immune response. Complex Systems 5, 351–356 (1991)

    MATH  Google Scholar 

  2. Agur, Z.: Randomness, synchrony and population persistence. J. Theor. Biol. 112, 677–693 (1985)

    Article  MathSciNet  Google Scholar 

  3. Agur, Z., Arnon, R., Schechter, B.: Reduction of cytotoxicity to normal tissues by new regimens of phase-specific drugs. Math. Biosci. 92, 1–15 (1988)

    Article  MATH  Google Scholar 

  4. Mehr, R., Agur, Z.: Bone marrow regeneration under cytotoxic drug regimens: behaviour ranging from homeostasis to unpredictability in a model for hemopoietic differentiation. BioSystems 26(4), 231–237 (1991)

    Article  Google Scholar 

  5. Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)

    Article  Google Scholar 

  6. Alarcón, T., Byrne, H.M., Maini, P.K.: A multiple scale model for tumour growth. SIAM Multiscale Modelling and Simulation (2004) (in press)

    Google Scholar 

  7. Artoli, A.M.M., Hoekstra, A.G., Sloot, P.M.A.: Simulation of a Systolic Cycle in a Realistic Artery with the Lattice Boltzmann. BGK Method, International Journal of Modern Physics B 17(1&2), 95–98 (2003)

    Article  Google Scholar 

  8. Artoli, A.M.M., Hoekstra, A.G., Sloot, P.M.A.: Mesoscopic simulations of systolic flow in the Human abdominal aorta. Journal of Biomechanics (2004)

    Google Scholar 

  9. Brons, P.P.T., Raemaekers, J.M., Bogman, M.J., van Erp, P.E., Boezeman, J.B., Pennings, A.H., Wessels, H.M., Haanen, C.: Cell cycle kinetics in malignant lymphoma studied with in vivo iodeoxyuridine administration, nuclear Ki-67 staining, and flow cytometry. Blood 80, 2336–2343 (1992)

    Google Scholar 

  10. Couderc, B., Dujols, J.P., Mokhtari, F., Norkowski, J.L., Slawinski, J.C., Schlaifer, D.: The management of adult aggressive non-Hodgkin’s lymphomas. Crit. Rev. Oncol. Hematol. 35, 33–48 (2000)

    Article  Google Scholar 

  11. Crampin, E.J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., Tawhai, M.: Computational physiology and the Physiome project. Exp. Physiol. 89, 1–26 (2004)

    Article  Google Scholar 

  12. Deutsch, A., Dormann, S.: Modelling of avascular tumour growth with a hybrid cellular automaton. Silico Biol. 2, 1–14 (2002)

    Google Scholar 

  13. Erlanson, M., Lindh, J., Zackrison, B., Landberg, G., Roos, G.: Cell kinetic analysis of non-Hodgkin’s lymphomas using in vivo iodeoxyuridine incorporation and flow cytometry. Hematol. Oncol. 13, 207–217 (1985)

    Article  Google Scholar 

  14. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993)

    Article  Google Scholar 

  15. Gatenby, R.A., Gawlinski, E.T.: A reaction-diffusion model of cancer invasion. Cancer. Res. 15, 5745–5753 (1996)

    Google Scholar 

  16. Kitano, H.: Systems biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  17. Kitano, H.: Opinion: Cancer as a robust system: implications for anticancer therapy. Nat. Rev. Cancer 3, 227–235 (2004)

    Article  Google Scholar 

  18. Lee, A.V., Schiff, R., Cui, X., Sachdev, D., Yee, D., Gilmore, A.P., Streuli, C.H., Oesterreich, S., Hadsell, D.L.: New mechanisms of signal transduction inhibitor action: receptor tyrosine kinase down-regulation and blockade of signal transactivation. Clin. Cancer Res. 9, 516S–523S (2003)

    Google Scholar 

  19. Lepage, E., Gisselbrecht, C., Haioun, C., Sebban, C., Tilly, H., Bosly, A., Morel, P., Herbrecht, R., Reyes, F., Coiffier, B.: Prognostic significance of received relative dose intensity in non-Hodgkin’s lymphoma patients: application to LNH-87 protocol. The GELA (Groupe d’Etude des Lymphomes de l’Adulte). Ann. Oncol. 4, 651–656 (1993)

    Google Scholar 

  20. Maree, A.F.M., Hogeweg, P.: How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum. Proc. Nat. Acad. Sci. 98, 3879–3883 (2001)

    Article  Google Scholar 

  21. McCulloch, A.D., Huber, G.: Integrative biological modelling in silico. In: Bock, G., Goode, J.A. (eds.) ’In silico’ simulation of biological processes. Novartis Foundation Symposium, vol. 247, pp. 4–19. John Wiley & Sons, London (2002)

    Google Scholar 

  22. Moreira, J., Deutsch, A.: Cellular automaton models of tumour development: a critical review. Adv. Complex Sys. 5, 247–267 (2001)

    Article  MathSciNet  Google Scholar 

  23. Murray, J.D.: Mathematical Biology. Springer, New York (2003)

    MATH  Google Scholar 

  24. Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A.: A cellular automaton model of early tumour growth and invasion: The effects of native tissue vascularity and increased anaerobic tumour metabolism. J. Theor. Biol. 213, 315–331 (2001)

    Article  MathSciNet  Google Scholar 

  25. Ribba, B., Marron, K., Alarcón, T., Maini, P.K., Agur, Z.: A mathematical model of Doxorubicin treatment efficacy on non-Hodgkin’s lymphoma: Investigation of current protocol through theoretical modelling result. Bull. Math. Biol. (2004) (in press)

    Google Scholar 

  26. Ribba, B., Dahan, N., Vainstein, V., Kogan, Y., Marron, K., Agur, Z.: Doxorubicin efficiency in residual non-Hodgkin’s lymphoma disease: towards a computationally supported treatment improvement (in preparation)

    Google Scholar 

  27. Stokke, T., Holte, H., Smedshammer, L., Smeland, E.B., Kaalhus, O., Steen, H.B.: Proliferation and apoptosis in malignant and normal cells in B-cell non-Hodgkin’s lymphomas. Br. J. Cancer 77, 1832–1838 (1988)

    Article  Google Scholar 

  28. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. 275, H349–H360 (1998)

    Google Scholar 

  29. Wheng, G., Bhalla, U.S., Iyengar, R.: Complexity in biological signaling systems. Science 284, 92–96 (1999)

    Article  Google Scholar 

  30. Willemse, F., Nap, M., de Bruijn, H.W.A., Holleman, H.: Quantification of vascular density and of lumen and vessel morphology in endometrial carcinoma. Evaluation of their relation to serum levels of tissue polypeptide-specific antigen and CA-125. Anal. Quant. Cytol. Histol. 19, 1–7 (1997)

    Google Scholar 

  31. Yancopoulos, G.D., Davis, A., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J.: Vascular specific growth factors and blood vessel formation. Nature 407, 242–248 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ribba, B., Alarcón, T., Marron, K., Maini, P.K., Agur, Z. (2004). The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30479-1_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23596-5

  • Online ISBN: 978-3-540-30479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics