Skip to main content

Neuropercolation: A Random Cellular Automata Approach to Spatio-temporal Neurodynamics

  • Conference paper
Book cover Cellular Automata (ACRI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3305))

Included in the following conference series:

Abstract

We outline the basic principles of neuropercolation, a generalized percolation model motivated by the dynamical properties of the neuropil, the densely interconnected neural tissue structure in the cortex. We apply the mathematical theory of percolation in lattices to analyze chaotic dynamical memories and their related phase transitions. This approach has several advantages, including the natural introduction of noise that is necessary for system stability, a greater degree of biological plausibility, a more uniform and simpler model description, and a more solid theoretical foundation for neural modeling. Critical phenomena and scaling properties of a class of random cellular automata (RCA) are studied on the lattice \(\mathbb Z^{2}\). In addition to RCA, we study phase transitions in mean-field models, as well as in models with axonal, non-local interactions. Relationship to the Ising universality class and to Toom cellular automata is thoroughly analyzed.

This research has been funded in part by NSF BITS Grant #0130352.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grossberg, S.: Nonlinear Neural Networks: Principles, Mechanisms, and Architectures. Neural Networks 1, 17–61 (1988)

    Article  Google Scholar 

  2. Hopfield, J.J.: Neural networks and physical systems with emrgent collective computational abilities. Proc. National Academy of Sciences, USA 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  3. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  4. Chua, L.O., Hasler, M., Moschytz, M., Neirynck: Autonomous cellular neural networks - A unified paradigm for pattern formation and active wave propagation. IEEE Trans. Circ. Syst. I - Fund. Th. Appl. 42, 559–577 (1995)

    Article  MathSciNet  Google Scholar 

  5. Freeman, W.J.: Tutorial on neurobiology - From single neurons to brain chaos. Int. J. Bifurcation & Chaos 2(3), 451–482 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freeman, W.J.: Societies of Brains. Lawrence Erlbaum, Mahwah (1995)

    Google Scholar 

  7. Freeman, W.J.: Noise-induced first order phase transitions in chaotic brain activity. Int. J. Bifurcation and Chaos 9(11), 2215–2218 (1999)

    Article  Google Scholar 

  8. Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  Google Scholar 

  9. Bollobas, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  10. Freeman, W.J., Kozma, R., Werbos, P.J.: Biocomplexity - Adaptive Behavior in Complex Stochastic Dynamical Systems. BioSystems 59, 109–123 (2001)

    Article  Google Scholar 

  11. Kauffman, S.A.: Requirements for evolvability in complex systems: orderly dynamics and frozen components. Physica D 42, 135–152 (1990)

    Article  Google Scholar 

  12. Grimmett, G.: Percolation in Fundamental Principles of Mathematical Sciences. Spinger, Berlin (1999)

    Google Scholar 

  13. Balister, P.N., Bollobas, B., Stacey, A.M.: Dependent percolation in two dimensions. Probability Theory and Related Fields 117(4), 495–513 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Balister, P., Bollobas, B., Stacey, A.: Upper bounds for the critical probability of oriented percolation in two dimensions. Proc. Royal Soc., London Sr., A. 400(1908), 202–220 (1993)

    MathSciNet  Google Scholar 

  15. Aizeman, Lebowitz: Metastability effects in bootstrap percolation. Journal Phys. A 21, 3801–3831 (1988)

    Article  Google Scholar 

  16. Duarte, A.M.S.: Simulation of a cellular automaton with an oriented bootstrap rule. Physica A 157, 1075–1079 (1989)

    Article  MathSciNet  Google Scholar 

  17. Adler, J., van Enter, Duarte, J.A.: Finite-size effects for some bootstrap percolatioin models. J. Statist. Phys. 60, 322–332 (1990)

    Google Scholar 

  18. Schonmann, R.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probability 20(1), 174–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cerf, R., Cirillo, E.N.: Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab. 27(4), 1837–1850 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Watts, D.J., Strogatz, S.H.: Nature 393, 440 (1998)

    Google Scholar 

  21. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61(5), 5678–5682 (2000)

    Article  Google Scholar 

  22. Newman, M.E.J., Jensen, I., Ziff, R.M.: Percolation and epidemics in a twodimensional small world. Phys. Rev. E 65, 1–7 (2002); 021904

    Article  Google Scholar 

  23. Toom, A.L., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov, G.L., Prigorov, S.A.: Discrete local Markov systems in Stochastic cellular systems: ergodicity, memory, morphogenesis. In: Dobrushin, R.L., Kryukov, V.I., Toom, A.L. (eds.). Manchester University Press (1990)

    Google Scholar 

  24. Balister., P., Bollobas, B., Kozma, R.: Mean filed models of probabilistic cellular automata (2003) (revised, submitted)

    Google Scholar 

  25. Balister, P., Bollobas, B., Johnson, R., Walters, M.: Majority percolation (2004) (submitted)

    Google Scholar 

  26. Binder, K.: Monte Carlo Methods in Statistical Physics. Springer, Heidelberg (1979)

    Google Scholar 

  27. Makowiec, D.: Stationary states of Toom cellular automata in simulations. Phys. Rev. E 60(4), 3786–3787 (1999)

    Article  Google Scholar 

  28. Kozma, R., Balister, P., Bollobas, B., Chen, H., Freeman, W.J.: Analysis of scaling laws in local random cellular automata (2003) (submitted)

    Google Scholar 

  29. Marcq, P., Chate, H., Manneville, P.: Universality in Ising-like phase transitions of lattices of coupled chaotic maps. Phys. Rev. E 55(1), 2606–2629 (1997)

    Article  MathSciNet  Google Scholar 

  30. Freeman, W.J.: Mass action in the nervous system. Academic Press, London (1975)

    Google Scholar 

  31. Kozma, R., Freeman, W.J.: Chaotic Resonance - Methods and applications for robust classification of noisy and variable patterns. Int. J. Bifurcation & Chaos 11(6), 1607–1629 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kozma, R., Puljic, M., Balister, P., Bollobas, B., Freeman, W.J. (2004). Neuropercolation: A Random Cellular Automata Approach to Spatio-temporal Neurodynamics. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30479-1_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23596-5

  • Online ISBN: 978-3-540-30479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics