Skip to main content

Text Mining of Full Text Articles and Creation of a Knowledge Base for Analysis of Microarray Data

  • Conference paper
Book cover Knowledge Exploration in Life Science Informatics (KELSI 2004)

Abstract

Automated extraction of information from biological literature promises to play an increasingly important role in text-based knowledge discovery processes. This is particularly true in regards to high throughput approaches such as microarrays and combining data from different sources in a systems biology approach. We have developed an integrated system that combines protein/gene name dictionaries, synonymy dictionaries, natural language processing, and pattern matching rules to extract and organize gene relationships from full text articles. In the first phase full text articles were collected from 20 peer-reviewed journals in the field of molecular biology and biomedicine over the last 5 years (1999-2003). The extracted relationships were organized in a database that included the unique PubMed ID and section id (abstract, introduction, materials and method, and results and discussion) to identify the source article and section from which concepts were extracted. The system architecture, its uniqueness and advantages are presented in this paper. It is hoped that the resulting knowledge base will assist in the understanding of gene lists generated from microarray experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Library of Medicine’s bibliographic database at http://www.ncbi.nlm.nih.gov

  2. Cowie, J., Lehnert, W.: Information extraction. Communications of the ACM 39, 80–91 (1996)

    Article  Google Scholar 

  3. Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T.: Towards Information Extraction: identifying protein names from biological papers. Pacific Symposium on Biocomputing, 707–718 (1998)

    Google Scholar 

  4. Eriksson, G., Franzen, K., Olsson, F.: Exploiting syntax when detecting protein names in text. In: Workshop on natural language processing in Biomedical Applications (2002)

    Google Scholar 

  5. Narayanaswamy, M., Ravikumar, K.E., Vijay-shankar, K.: A Biological Named Enitity Recognizer. Pacific Symposium on Biocomputing 8, 427–438 (2003)

    Google Scholar 

  6. Krauthammer, M., Rzhetsky, A., Morozov, P., Friedman, C.: Using blast for identifying gene and protein names in journal articles. Gene, 245–252 (2000)

    Google Scholar 

  7. Hanisch, D., Fluck, J., Mevissien, D.T., Zimmer, R.: Playing Biology’s Name Game: Identifying protein names in scientific text. Pacific Symposium on Biocomputing 8, 403–414 (2003)

    Google Scholar 

  8. Egorov, S., Yuryev, A., Daraselia, N.: A simple and practical dictionary based approach for identification of proteins in Medline abstracts. JAMIA 11(3), 174–178 (2004)

    Google Scholar 

  9. Hatzivassiloglou, V., Duboue, P.A., Rzhetsky, A.: Disambiguating proteins, genes, and RNA in text: a machine learning approach. In: Proceedings of the 9th International Conference on Intelligent Systems for Molecular Biology, pp. 97–106 (2001)

    Google Scholar 

  10. Wilbur, W., et al.: Analysis of biomedical text for biochemical names: As comparison of three methods. AMIA symposium, 176–180 (1999)

    Google Scholar 

  11. Collier, N., Nobata, C., Tsujii, T.: 2000. In: COLING conference proceedings, pp. 201–207 (2000)

    Google Scholar 

  12. Kazama, J., Makino, T., Ohta, Y., Tsujii, J.: Tuning Support Vector Machines for Biomedical Named Entity Recognition. In: Proceedings of the Natural Language Processing in the Biomedical Domain, Philadelphia, PA, USA (2002)

    Google Scholar 

  13. Chang, J.T., Schutze, H., Altman, R.B.: GAPSCORE: finding gene and protein names one word at a time. Bioinformatics 20, 216–225 (2004)

    Article  Google Scholar 

  14. Tanabe, L., Wilbur, J.: Tagging gene and protein names in biomedical text. Bioinformatics 18, 1124–1132 (2002)

    Article  Google Scholar 

  15. Ono, T., Hishigaki, H., Tanigami, A., Takagi, T.: Automated extraction of information on protein-protein interactions from the biological literature. Bioinformatics 17, 155–161 (2001)

    Article  Google Scholar 

  16. Wong, L.: A protein interaction extraction system. Pacific Symposium on Biocomputing 6, 520–531 (2001)

    Google Scholar 

  17. Humphreys, K., Demetriou, G., Gaizauskas, R.: Two applications of information extraction to biological science journal articles: enzyme interactions and protein structure. Pacific Symposium on Biocomputing 5, 505–516 (2000)

    Google Scholar 

  18. Park, J.C., Kim, H.S., Kim, J.J.: Bi-directional incremental parsing for automatic pathway identification with combinatory categorical grammar. Pacific Symposium on Biocomputing 6, 396–407 (2001)

    Google Scholar 

  19. Pusteojovsky, J., Castano, J., Zhang, J., Kotecki, M., Cochran, B.: Robust relational parsing over biomedical literature: Extracting inhibits relations. Pacific Symposium on Biocomputing 7, 362–373 (2002)

    Google Scholar 

  20. Yakushiji, A., Tateisi, Y., Miyao, Y., Tsujii, J.: Event extraction from biomedical papers using a full parser. Pacific Symposium on Biocomputing 6, 408–419 (2001)

    Google Scholar 

  21. Sekimizu, T., Park, H.S., Tsujii, J.: Identifying the interaction between genes and gene products based on frequently seen verbs in Medline abstracts. In: Proceedings of the workshop on Genome Informatics, pp. 62–71 (1998)

    Google Scholar 

  22. Rindflesch, T., Tanabe, L., Weinstein, J., Hunter, L.: EDGAR: Extraction of drugs, genes and relations from the biomedical literature. Pacific Symposium on Biocomputing 5, 517–528 (2000)

    Google Scholar 

  23. Ng, S.-K., Wong, M.: Towards routine automatic pathway discovery from on-line scientific text abstracts. In: Proceedings of the workshop on Genome Informatics, vol. 10, pp. 104–112 (1999)

    Google Scholar 

  24. Rzhetsky, A., et al.: GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. Jr of Biomedical Informatics 37, 43–53 (2004)

    Article  Google Scholar 

  25. Pustejovsky, J., et al.: Medstract: Creating large scale information servers for biomedical libraries. In: ACL 2002, Philadelphia (2002)

    Google Scholar 

  26. Wong, L.: PIES a protein interaction extraction system. Pacific Symposium on Biocomputing 6, 520–531 (2001)

    Google Scholar 

  27. Schena, M., Shalon, D., Davis, R.W., Brown, P.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  28. DeRisi, J., Iyer, V., Brown, P.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)

    Article  Google Scholar 

  29. SPSS LexiQuest mine, available at http://www.spss.com

  30. GetItRight, available at http://www.cthtech.com

  31. LocusLink online gene database, available at http://www.ncbi.nlm.nih.gov/locuslink

  32. Genecards online human gene databank available at http://bioinformatics.weizmann.ac.il/cards/

  33. Swissprot senquence database, available at http://ca.expasy.org/sprot/

  34. GoldenPath, Human Genome project, at http://www.cse.ucsc.edu/centers/cbe/Genome/

  35. HUGO Human Genome Organization, at http://www.gene.ucl.ac.uk/hugo/

  36. Chen, P.: The entity-relationship model: Toward a uniform view of data. ACM Transactions on Database systems 1(1), 9–36 (1976)

    Article  Google Scholar 

  37. DIP online protein interaction database, available at http://dip.doe-mbi.ucla.edu/

  38. KEGG: Kyoto Encyclopedia of Genes and Genomes, available at http://www.genome.ad.jp/kegg/

  39. Baeza-Yates, R., Ribeiro-Nato, B.: Modern information retrieval. Addison-Wesley, Harlow (1999)

    Google Scholar 

  40. Mayanil, C.S., George, D., Freilich, L., Miljan, E.J., Mania-Farnell, B., McLone, D.G., Bremer, E.G.: Microarray analysis detects novel Pax3 downstream target genes. J Biol. Chem. 276(52), 49299–49309 (2001)

    Article  Google Scholar 

  41. SPSS Clementine workbench, available at http://www.spss.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bremer, E.G., Natarajan, J., Zhang, Y., DeSesa, C., Hack, C.J., Dubitzky, W. (2004). Text Mining of Full Text Articles and Creation of a Knowledge Base for Analysis of Microarray Data. In: LĂłpez, J.A., Benfenati, E., Dubitzky, W. (eds) Knowledge Exploration in Life Science Informatics. KELSI 2004. Lecture Notes in Computer Science(), vol 3303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30478-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30478-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23927-7

  • Online ISBN: 978-3-540-30478-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics