Advertisement

D-Fusion: A Distinctive Fusion Calculus

  • Michele Boreale
  • Maria Grazia Buscemi
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3302)

Abstract

We study the relative expressive power of Fusion and pi-calculus. Fusion is commonly regarded as a generalisation of pi-calculus. Actually, we prove that there is no uniform fully abstract embedding of pi-calculus into Fusion. This fact motivates the introduction of a new calculus, D-Fusion, with two binders, λ and ν. We show that D-Fusion is strictly more expressive than both pi-calculus and Fusion. The expressiveness gap is further clarified by the existence of a fully abstract encoding of mixed guarded choice into the choice-free fragment of D-Fusion.

Keywords

Expressive Power Parallel Composition Label Transition System Reasonable Semantic Identity Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisation in Pi-Calculus. Nordic Journal of Computing (to appear)Google Scholar
  2. 2.
    Fu, Y.: A Proof Theoretical Approach to Communication. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Gardner, P., Laneve, C., Wischik, L.: The fusion machine (extended abstract). In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 418. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Gardner, P., Wischik, L.: Explicit Fusions. Theoretical Computer Science (to appear)Google Scholar
  5. 5.
    Meredith, L.G., Bjorg, S., Richter, D.: Highwire Language Specification Version 1.0 (unpublished manuscript)Google Scholar
  6. 6.
    Microsoft Corp. Biztalk Server, http://www.microsoft.com/biztalk
  7. 7.
    Merro, M.: On the Expressiveness of Chi, Update, and Fusion calculi. In: Proc. of EXPRESS 1998. ENTCS, vol. 16(2). Elsevier Science, Amsterdam (1998)Google Scholar
  8. 8.
    Miller, D.: Unification under a mixed prefix. Journal of Symbolic Computation 14(4), 321–358 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Milner, R.: The Polyadic pi-Calculus: a Tutorial. Technical Report, Computer Science Dept. University of Edinburgh (1991)Google Scholar
  10. 10.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (parts I and II). Information and Computation 100(1), 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Nestmann, U., Pierce, B.C.: Decoding choice encodings. Information and Computation 163(1), 1–59 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous pi-calculus. In: Conf. Rec. of POPL 1997 (1997)Google Scholar
  14. 14.
    Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous pi-calculus. Mathematical Structures in Computer Science 13(5), 685–719 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Parrow, J., Victor, B.: The Update Calculus. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Parrow, J., Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. In: Proc. of LICS 1998. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  17. 17.
    Shapiro, E.: The Family of Concurrent Logic Programming Languages. ACM Computing Surveys 21(3), 413–510 (1989)CrossRefGoogle Scholar
  18. 18.
    Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis, Department of Computer Science, University of Edinburgh (1992)Google Scholar
  19. 19.
    Sangiorgi, D.: A Theory of Bisimulation for the pi-Calculus. Acta Informatica 33(1), 69–97 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Saraswat, V.: Concurrent Constraint Programming. MIT Press, Cambridge (1993)zbMATHGoogle Scholar
  21. 21.
    Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. PhD thesis, Department of Computer Systems, Uppsala University (1998)Google Scholar
  22. 22.
    World Wide Web Consortium (W3C), http://www.w3.org/TR/wsdl12

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michele Boreale
    • 1
  • Maria Grazia Buscemi
    • 2
  • Ugo Montanari
    • 2
  1. 1.Dipartimento di Sistemi e InformaticaUniversità di FirenzeItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations