Skip to main content

Motion Control

  • Reference work entry
Springer Handbook of Robotics

Abstract

This Chapter will focus on the motion control of robotic rigid manipulators. In other words, this Chapter does not treat the motion control of mobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this Chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other Chapters.

In this Chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 6.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 6.2. Independent joint control and proportional–integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sections 6.3 and 6.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 6.5. The computed-torque control and its variants are described in Sect. 6.6. Adaptive control is introduced in Sect. 6.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 6.8. Since most controllers of robot manipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 6.9. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 6.10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DOF:

degree of freedom

GAS:

global asymptotic stability

HJB:

Hamilton–Jacobi–Bellman

HJI:

Hamilton–Jacobi–Isaac

IOSS:

input-output-to-state stability

ISS:

input-to-state stability

MIMO:

multi-input multi-output

MRAC:

model reference adaptive control

PD:

proportional-derivative

PI:

policy iteration

PID:

proportional–integral–derivative

ROM:

read-only memory

SGAS:

semiglobal asymptotic stability

SGUUB:

semiglobal uniform ultimate boundedness

SISO:

single-input single-output

UUB:

uniform ultimate boundedness

References

  1. C. Canudas de Wit, B. Siciliano, G. Bastin: Theory of Robot Control (Springer, London 1996)

    MATH  Google Scholar 

  2. J.J. Craig: Adaptive Control of Mechanical Manipulators. Ph.D. Thesis (UMI Dissertation Information Service, Ann Arbor 1986)

    Google Scholar 

  3. R.J. Schilling: Fundametals of Robotics: Analysis and Control (Prentice-Hall, Upper Saddle River 1989)

    Google Scholar 

  4. L. Sciavicco, B. Siciliano: Modeling and Control of Robot Manipulator (McGraw-Hill, New York 1996)

    Google Scholar 

  5. M.W. Spong, M. Vidyasagar: Robot Dynamics and Control (Wiley, New York 1989)

    Google Scholar 

  6. M.W. Spong, F.L. Lewis, C.T. Abdallah (Eds.): Robot Control (IEEE, New York 1989)

    Google Scholar 

  7. C.H. An, C.G. Atkeson, J.M. Hollerbach: Model–Based Control of a Robot Manipulator (MIT Press, Cambridge, 1988)

    Google Scholar 

  8. R.M. Murray, Z. Xi, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton 1994)

    MATH  Google Scholar 

  9. T. Yoshikawa: Foundations of Robotics (MIT Press, Cambridge 1990)

    Google Scholar 

  10. O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  11. J.Y.S. Luh, M.W. Walker, R.P.C. Paul: Resolved–acceleration control of mechanical manipulator, IEEE Trans. Autom. Contr. 25(3), 468–474 (1980)

    Article  MATH  Google Scholar 

  12. S. Arimoto, F. Miyazaki: Stability and robustness of PID feedback control for robot manipulators of sensory capability. In: Robotics Research, ed. by M. Brady, R. Paul (MIT Press, Cambridge 1984) pp. 783–799

    Google Scholar 

  13. L.C. Fu: Robust adaptive decentralized control of robot manipulators, IEEE Trans. Autom. Contr. 37(1), 106–110 (1992)

    Article  Google Scholar 

  14. H. Seraji: Decentralized adaptive control of manipulators: Theory, simulation, and experimentation, IEEE Trans. Robot. Autom. 5(2), 183–201 (1989)

    Article  Google Scholar 

  15. J.G. Ziegler, N.B. Nichols: Optimum settings for automatic controllers, ASME Trans. 64, 759–768 (1942)

    Google Scholar 

  16. Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, Lecture Notes in Control and Information Sciences, Vol. 289 (Springer, New York 2004)

    MATH  Google Scholar 

  17. R. Kelly: PD control with desired gravity compensation of robot manipulators: A review, Int. J. Robot. Res. 16(5), 660–672 (1997)

    Article  Google Scholar 

  18. M. Takegaki, S. Arimoto: A new feedback method for dynamic control of manipulators, Trans. ASME J. Dyn. Syst. Meas. Contr. 102, 119–125 (1981)

    Article  Google Scholar 

  19. P. Tomei: Adaptive PD controller for robot manipulators, IEEE Trans. Robot. Autom. 7(4), 565–570 (1991)

    Article  Google Scholar 

  20. R. Ortega, A. Loria, R. Kelly: A semi-globally stable output feedback PI2 D regulator for robot manipulators, IEEE Trans. Autom. Contr. 40(8), 1432–1436 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Angeli: Input-to-State stability of PD-controlled robotic systems, Automatica 35, 1285–1290 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. J.A. Ramirez, I. Cervantes, R. Kelly: PID regulation of robot manipulators: stability and performance, Sys. Contr. Lett. 41, 73–83 (2000)

    Article  MATH  Google Scholar 

  23. R. Kelly: Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions, IEEE Trans. Autom. Contr. 43(7), 934–937 (1998)

    Article  MATH  Google Scholar 

  24. Z. Qu, J. Dorsey: Robust tracking control of robots by a linear feedback law, IEEE Trans. Autom. Contr. 36(9), 1081–1084 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Berghuis, H. Nijmeijer: Robust control of robots via linear estimated state feedback, IEEE Trans. Autom. Contr. 39(10), 2159–2162 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Choi, W.K. Chung, I.H. Suh: Performance and ℋ!!!*AMP*!!!#8734; optimality of PID trajectory tracking controller for Lagrangian systems, IEEE Trans. Robot. Autom. 17(6), 857–869 (2001)

    Article  Google Scholar 

  27. K. Aström, T. Hagglund: PID Controllers: Theory, Design, and Tuning (Instrument Society of America, Research Triangle Park 1995)

    Google Scholar 

  28. C.C. Yu: Autotuning of PID Controllers: Relay Feedback Approach (Springer, London 1999)

    MATH  Google Scholar 

  29. F.L. Lewis, C.T. Abdallah, D.M. Dawson: Control of Robot Manipulators (Macmillan, New York 1993)

    Google Scholar 

  30. A. Isidori: Nonlinear Control Systems: An Introduction, Lecture Notes in Control and Information Sciences, Vol. 72 (Springer, New York 1985)

    Book  MATH  Google Scholar 

  31. H. Berghuis, H. Nijmeijer: A passivity approach to controller–observer design for robots, IEEE Trans. Robot. Autom. 9, 740–754 (1993)

    Article  Google Scholar 

  32. J.J. Slotine, W. Li: On the adaptive control of robot manipulators, Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  33. G. Liu, A.A. Goldenberg: Comparative study of robust saturation–based control of robot manipulators: analysis and experiments, Int. J. Robot. Res. 15(5), 473–491 (1996)

    Article  Google Scholar 

  34. D.M. Dawson, M. Grabbe, F.L. Lewis: Optimal control of a modified computed–torque controller for a robot manipulator, Int. J. Robot. Autom. 6(3), 161–165 (1991)

    Google Scholar 

  35. D.M. Dawson, Z. Qu, J. Duffie: Robust tracking control for robot manipulators: theory, simulation and implementation, Robotica 11, 201–208 (1993)

    Article  Google Scholar 

  36. A. Jaritz, M.W. Spong: An experimental comparison of robust control algorithms on a direct drive manipulator, IEEE Trans. Contr. Syst. Technol. 4(6), 627–640 (1996)

    Article  Google Scholar 

  37. A. Isidori: Nonlinear Control Systems, 3rd edn. (Springer, New York 1995)

    MATH  Google Scholar 

  38. J.J. Slotine, W. Li: Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs 1991)

    MATH  Google Scholar 

  39. W.J. Rugh: Linear System Theory, 2nd edn. (Prentice-Hall, Upper Saddle River 1996)

    MATH  Google Scholar 

  40. M.W. Spong, M. Vidyasagar: Robust microprocessor control of robot manipulators, Automatica 23(3), 373–379 (1987)

    Article  MATH  Google Scholar 

  41. H.K. Khalil: Nonlinear Systems, 3rd edn. (Prentice-Hall, Upper Saddle River 2002)

    MATH  Google Scholar 

  42. M. Vidysagar: Nonlinear Systems Analysis, 2nd edn. (Prentice-Hall, Englewood Ciffs 1993)

    Google Scholar 

  43. J.T. Wen: A unified perspective on robot control: The energy Lyapunov function approach, Int. J. Adapt. Contr. Signal Proc. 4, 487–500 (1990)

    Article  MATH  Google Scholar 

  44. R. Ortega, M.W. Spong: Adaptive motion control of rigid robots: A tutorial, Automatica 25(6), 877–888 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  45. N. Sadegh, R. Horowitz: Stability and robustness analysis of a class of adaptive contollers for robotic manipulators, Int. J. Robot. Res. 9(3), 74–92 (1990)

    Article  Google Scholar 

  46. S. Dubowsky, D.T. DesForges: The application of model-reference adaptive control to robotic manipulators, ASME J. Dyn. Syst. Meas. Control. 37(1), 106–110 (1992)

    Google Scholar 

  47. A. Balestrino, G. de Maria, L. Sciavicco: An adaptive model following control for robotic manipulators, ASME J. Dyn. Syst. Meas. Control. 105, 143–151 (1983)

    Article  MATH  Google Scholar 

  48. S. Nicosia, P. Tomei: Model reference adaptive control algorithms for industrial robots, Automatica 20, 635–644 (1984)

    Article  MATH  Google Scholar 

  49. R. Horowitz, M. Tomizuka: An adaptive control scheme for mechanical manipulators-Compensation of nonlinearity and decoupling control, ASME J. Dyn. Syst. Meas. Contr. 108, 127–135 (1986)

    Article  MATH  Google Scholar 

  50. I.D. Laudau: Adaptive Control: The Model Reference Approach (Dekker, New York 1979)

    Google Scholar 

  51. R. Lozano, C. Canudas de Wit: Passivity based adaptive control for mechanical manipulators using LS type estimation, IEEE Trans. Autom. Contr. 35(12), 1363–1365 (1990)

    Article  MATH  Google Scholar 

  52. B. Brogliato, I.D. Laudau, R. Lozano: Passive least squares type estimation algorithm for direct adaptive control, Int. J. Adapt. Contr. Signal Process. 6, 35–44 (1992)

    Article  MATH  Google Scholar 

  53. R. Johansson: Adaptive control of robot manipulator motion, IEEE Trans. Robot. Autom. 6(4), 483–490 (1990)

    Article  MathSciNet  Google Scholar 

  54. M.W. Walker: Adaptive control of manipulators containing closed kinematic loops, IEEE Trans. Robot. Autom. 6(1), 10–19 (1990)

    Article  Google Scholar 

  55. J.S. Reed, P.A. Ioannou: Instability analysis and robust adaptive control of robotic manipulators, IEEE Trans. Autom. Contr. 5(3), 74–92 (1989)

    Google Scholar 

  56. G. Tao: On robust adaptive control of robot manipulators, Automatica 28(4), 803–807 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  57. H. Berghuis, R. Ogata, H. Nijmeijer: A robust adaptive controller for robot manipulators, Proc. IEEE Int. Conf. Robot. Autom. (1992) pp. 1876–1881

    Google Scholar 

  58. R. Johansson: Quadratic optimization of motion coordination and control, IEEE Trans. Autom. Contr. 35(11), 1197–1208 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  59. Z. Qu, D.M. Dawson: Robust Tracking Control of Robot Manipulators (IEEE, Piscataway 1996)

    MATH  Google Scholar 

  60. P. Dorato, C. Abdallah, V. Cerone: Linear-Quadratic Control (Prentice-Hall, Upper Saddle River 1995)

    MATH  Google Scholar 

  61. A. Locatelli: Optimal Control: An Introduction (Birkhäuser, Basel 2001)

    MATH  Google Scholar 

  62. A. Isidori: Feedback control of nonlinear systems, Int. J. Robust Nonlin. Contr. 2, 291–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  63. A.J. Van Der Schaft: Nonlinear state space ℋ!!!*AMP*!!!#8734; control theory. In: Essays on Control: Perspective in Theory and its Applications, ed. by H.L. Trentelman, J.C. Willems (Birkhäuser, Basel 1993) pp. 153–190

    Google Scholar 

  64. A.J. Van Der Schaft: L 29-gain analysis of nonlinear systems and nonlinear state feedback ℋ!!!*AMP*!!!#8734; control, IEEE Trans. Autom. Contr. 37(6), 770–784 (1992)

    Article  MATH  Google Scholar 

  65. J. Park, W.K. Chung, Y. Youm: Analytic nonlinear ℋ!!!*AMP*!!!#8734; inverse-optimal control for Euler-Lagrange system, IEEE Trans. Robot. Autom. 16(6), 847–854 (2000)

    Article  Google Scholar 

  66. B.S. Chen, T.S. Lee, J.H. Feng: A nonlinear ℋ!!!*AMP*!!!#8734; control design in robotics systems under parametric perturbation and external disturbance, Int. J. Contr. 59(12), 439–461 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  67. J. Park, W.K. Chung: Design of a robust ℋ!!!*AMP*!!!#8734; PID control for industrial manipulators, ASME J. Dyn. Syst. Meas. Contr. 122(4), 803–812 (2000)

    Article  Google Scholar 

  68. S. Arimoto: Mathematical theory or learning with application to robot control. In: Adaptive and Learning Control, ed. by K.S. Narendra (Plenum, New York 1986) pp. 379–388

    Google Scholar 

  69. S. Kawamura, F. Miyazaki, S. Arimoto: Realization of robot motion based on a learning method, IEEE Trans. Syst. Man. Cybern. 18(1), 126–134 (1988)

    Article  Google Scholar 

  70. G. Heinzinger, D. Frewick, B. Paden, F. Miyazaki: Robust learning control, Proc. IEEE Int. Conf. Dec. Contr. (1989)

    Google Scholar 

  71. S. Arimoto: Robustness of learning control for robot manipulators, Proc. IEEE Int. Conf. Dec. Contr. (Bellingham 1990) pp. 1523–1528

    Google Scholar 

  72. S. Arimoto, T. Naiwa, H. Suzuki: Selective learning with a forgetting factor for robotic motion control, Proc. IEEE Int. Conf. Dec. Contr. (Bellingham 1991) pp. 728–733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wankyun Chung Prof or Li-Chen Fu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Chung, W., Fu, LC., Hsu, SH. (2008). Motion Control. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics