Skip to main content

Motion for Manipulation Tasks

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CF:

climbing fibers

CF:

contact formation

DOF:

degree of freedom

GCR:

goal-contact relaxation

IK:

inverse kinematics

PC:

Purkinje cells

PC:

principal contact

RCC:

remote center of compliance

References

  1. M.T. Mason: Mechanics of Robotic Manipulation (MIT Press, Cambridge 2001)

    Google Scholar 

  2. H. Inoue: Force feedback in precise assembly tasks, Tech. Rep. 308 (Artificial Intelligence Laboratory, MIT, Cambridge 1974)

    Google Scholar 

  3. T. Lozano-Pérez, M. Mason, R.H. Taylor: Automatic synthesis of fine-motion strategies for robots, Int. J. Robot. Res. 31(1), 3–24 (1984)

    Article  Google Scholar 

  4. O. Khatib: A unified approach to motion and force control of robot manipulators: the operational space formulation, Int. J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  5. O. Khatib, K. Yokoi, O. Brock, K.-S. Chang, A. Casal: Robots in human environments, Arch. Contr. Sci. 11(3/4), 123–138 (2001)

    MATH  Google Scholar 

  6. G. Strang: Linear Algegra and Its Applications (Brooks Cole, New York 1988)

    Google Scholar 

  7. H. Seraji: An on-line approach to coordinated mobility and manipulation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 1 (Atlanta 1993) pp. 28–35

    Google Scholar 

  8. J.M. Cameron, D.C. MacKenzie, K.R. Ward, R.C. Arkin, W.J. Book: Reactive control for mobile manipulation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 3 (Atlanta 1993) pp. 228–235

    Google Scholar 

  9. M. Egerstedt, X. Hu: Coordinated trajectory following for mobile manipulation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Francisco 2000)

    Google Scholar 

  10. P. Ögren, M. Egerstedt, X. Hu: Reactive mobile manipulation using dyanmic trajectory tracking, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Francicso 2000) pp. 3473–3478

    Google Scholar 

  11. J. Tan, N. Xi, Y. Wang: Integrated task planning and control for mobile manipulators, Int. J. Robot. Res. 22(5), 337–354 (2003)

    Article  Google Scholar 

  12. Y. Yamamoto, X. Yun: Unified analysis on mobility and manipulability of mobile manipulators, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Detroit 1999) pp. 1200–1206

    Google Scholar 

  13. L. Sentis, O. Khatib: Control of free-floating humanoid robots through task prioritization, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Barcelona 2005)

    Google Scholar 

  14. L. Sentis, O. Khatib: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives, Int. J. Human Robot. 2(4), 505–518 (2005)

    Article  Google Scholar 

  15. O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  16. M. Huber, R.A. Grupen: A feedback control structure for on-line learning tasks, Robot. Auton. Syst. 22(3-4), 303–315 (1997)

    Article  Google Scholar 

  17. R. Alami, J.P. Laumond, T. Simʼeon: Two manipulation planning algorithms, Workshop Algorithm. Found. Robot. (1994)

    Google Scholar 

  18. S.M. LaValle: Planning Algorithms (Cambridge Univ. Press, Cambridge 2006), (also available at http-//msl.cs.uiuc.edu/planning/)

    Book  MATH  Google Scholar 

  19. R. Grossman, A. Nerode, A. Ravn, H. Rischel (Eds.): Hybrid Systems (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  20. K.J. Gupta Ahuactzin, E. Mazer: Manipulation planning for redundant robots: a practical approach, Int. J. Robot. Res. 17(7), 731–747 (1998)

    Article  Google Scholar 

  21. Y. Koga: On Computing Multi-Arm Manipulation Trajectories. Ph.D. Thesis (Stanford University, Stanford 1995)

    Google Scholar 

  22. D. Bertram, J.J. Kuffner, T. Asfour, R. Dillman: A unified approach to inverse kinematics and path planning for redundant manipulators, Proc. IEEE Int. Conf. Robot. Autom. (ICRAʼ06) (2006) pp. 1874–1879

    Google Scholar 

  23. T. Lozano-Pérez: Spatial planning: a configuration space approach, IEEE Trans. Comput. C-32(2), 108–120 (1983)

    Article  Google Scholar 

  24. R. Desai: On Fine Motion in Mechanical Assembly in Presence of Uncertainty. Ph.D. Thesis (Department of Mechanical Engineering, University of Michigan, 1989)

    Google Scholar 

  25. J. Xiao: Automatic determination of topological contacts in the presence of sensing uncertainties, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Atlanta 1993) pp. 65–70

    Google Scholar 

  26. J. Xiao, X. Ji: On automatic generation of high-level contact state space, Int. J. Robot. Res. 20(7), 584–606 (2001), (and its first multi-media extension issue eIJRR)

    Article  Google Scholar 

  27. S.N. Simunovic: Force information in assembly processes, Proc. 5th Int. Symp. Ind. Robots (1975) pp. 415–431

    Google Scholar 

  28. S.H. Drake: Using Compliance in Lieu of Sensory Feedback for Automatic Assembly. Ph.D. Thesis (Department of Mechanical Engineering, Massachusetts Institute of Technology 1989)

    Google Scholar 

  29. D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Contr. 104, 65–77 (1982)

    Article  MATH  Google Scholar 

  30. R.L. Hollis: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling, and control, IEEE Trans. Robot. Autom. 7(3), 320–332 (1991)

    Article  MathSciNet  Google Scholar 

  31. S. Joo, F. Miyazaki: Development of variable RCC and ITS application, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Vol. 3 (Victoria 1998) pp. 1326–1332

    Google Scholar 

  32. H. Kazerooni: Direct-drive active compliant end effector (active RCC), IEEE J. Robot. Autom. 4(3), 324–333 (1988)

    Article  Google Scholar 

  33. R.H. Sturges, S. Laowattana: Fine motion planning through constraint network analysis, Proc. Int. Symp. Assem. Task Plan. (1995), 160–170

    Google Scholar 

  34. D.E. Whitney: Historic perspective and state of the art in robot force control, Int. J. Robot. Res. 6(1), 3–14 (1987)

    Article  Google Scholar 

  35. M. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robot. Autom. 6(4), 473–482 (1990)

    Article  Google Scholar 

  36. J.M. Schimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robot. Autom. 8(2), 213–227 (1992)

    Article  Google Scholar 

  37. J.M. Schimmels: A linear space of admittance control laws that guarantees force assembly with friction, IEEE Trans. Robot. Autom. 13(5), 656–667 (1997)

    Article  Google Scholar 

  38. S. Hirai, T. Inatsugi, K. Iwata: Learning of admittance matrix elements for manipulative operations, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (1996) pp. 763–768

    Google Scholar 

  39. S. Lee, H. Asada: A perturbation/correlation method for force guided robot assembly, IEEE Trans. Robot. Autom. 15(4), 764–773 (1999)

    Article  Google Scholar 

  40. H. Asada: Representation and learning of nonlinear compliance using neural nets, IEEE Trans. Robot. Autom. 9(6), 863–867 (1993)

    Article  Google Scholar 

  41. J. Simons, H. Van Brussel, J. De Schutter, J. Verhaert: A self-learning automaton with variable resolution for high precision assembly by industrial robots, IEEE Trans. Autom. Contr. 27(5), 1109–1113 (1982)

    Article  MATH  Google Scholar 

  42. V. Gullapalli, J.A. Franklin, H. Benbrahim: Acquiring robot skills via reinforcement learning, IEEE Contr. Syst. 14(1), 13–24 (1994)

    Article  Google Scholar 

  43. Q. Wang, J. De Schutter, W. Witvrouw, S. Graves: Derivation of compliant motion programs based on human demonstration, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1996) pp. 2616–2621

    Google Scholar 

  44. R. Cortesao, R. Koeppe, U. Nunes, G. Hirzinger: Data fusion for robotic assembly tasks based on human skills, IEEE Trans. Robot. Autom. 20(6), 941–952 (2004)

    Google Scholar 

  45. K. Ikeuchi, T. Suehiro: Toward an assembly plan from observation. Part I: task recognition with polyhedral objects, IEEE Trans. Robot. Autom. 10(3), 368–385 (1994)

    Article  Google Scholar 

  46. H. Onda, H. Hirokawa, F. Tomita, T. Suehiro, K. Takase: Assembly motion teaching system using position/forcesimulator-generating control program, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (1997) pp. 938–945

    Google Scholar 

  47. H. Onda, T. Suehiro, K. Kitagaki: Teaching by demonstration of assembly motion in VR – non-deterministic search-type motion in the teaching stage, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2002) pp. 3066–3072

    Google Scholar 

  48. T. Lozano-Pérez, M.T. Mason, R.H. Taylor: Automatic synthesis of fine-motion strategies for robot, Int. J. Robot. Res. 31(1), 3–24 (1984)

    Article  Google Scholar 

  49. B.R. Donald: Error Detection and Recovery in Robotics (Springer, Berlin, Heidelberg 1989)

    MATH  Google Scholar 

  50. J. Canny: On computability of fine motion plans, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1989) pp. 177–182

    Google Scholar 

  51. M. Erdmann: Using backprojections for fine motion planning with uncertainty, Int. J. Robot. Res. 5(1), 19–45 (1986)

    Article  Google Scholar 

  52. J.C. Latombe: Robot Motion Planning (Kluwer Academic, Dordrecht 1991)

    Google Scholar 

  53. B. Dufay, J.C. Latombe: An approach to automatic programming based on inductive learning, Int. J. Robot. Res. 3(4), 3–20 (1984)

    Article  Google Scholar 

  54. H. Asada, S. Hirai: Towards a symbolic-level force feedback: recognition of assembly process states, Proc. Int. Symp. Robot. Res. (1989) pp. 290–295

    Google Scholar 

  55. J. Xiao, R. Volz: On replanning for assembly tasks using robots in the presence of uncertainties, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1989) pp. 638–645

    Google Scholar 

  56. J. Xiao: Replanning with compliant rotations in the presence of uncertainties, Proc. Int. Symp. Intell. Contr. (Glasgow 1992) pp. 102–107

    Google Scholar 

  57. G. Dakin, R. Popplestone: Simplified fine-motion planning in generalized contact space, Proc. Int. Symp. Intell. Contr. (1992) pp. 281–287

    Google Scholar 

  58. G. Dakin, R. Popplestone: Contact space analysis for narrow-clearance assemblies, Proc. Int. Symp. Intell. Contr. (1993) pp. 542–547

    Google Scholar 

  59. J. Rosell, L. Basañez, R. Suárez: Compliant-motion planning and execution for robotic assembly, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1999) pp. 2774–2779

    Google Scholar 

  60. R. Taylor: The Synthesis of Manipulator Control Programs from Task-Level Specifications. Ph.D. Thesis (Stanford University, Stanford 1976)

    Google Scholar 

  61. R.A. Brooks: Symbolic error analysis and robot planning, Int. J. Robot. Res. 1(4), 29–68 (1982)

    Article  Google Scholar 

  62. R.A. Smith, P. Cheeseman: On the representation and estimation of spatial uncertaity, Int. J. Robot. Res. 5(4), 56–68 (1986)

    Article  Google Scholar 

  63. S.-F. Su, C. Lee: Manipulation and propagation of uncertainty and verification of applicability of actions in assembly tasks, IEEE Trans. Syst. Man Cybern. 22(6), 1376–1389 (1992)

    Article  MATH  Google Scholar 

  64. S.-F. Su, C. Lee, W. Hsu: Automatic generation of goal regions for assembly tasks in the presence of uncertainty, IEEE Trans. Robot. Autom. 12(2), 313–323 (1996)

    Article  Google Scholar 

  65. J. Hopcroft, G. Wilfong: Motion of objects in contact, Int. J. Robot. Res. 4(4), 32–46 (1986)

    Article  Google Scholar 

  66. F. Avnaim, J.D. Boissonnat, B. Faverjon: A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1988) pp. 1656–1661

    Google Scholar 

  67. R. Brost: Computing metric and topological properties of c-space obstacles, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1989) pp. 170–176

    Google Scholar 

  68. B. Donald: A search algorithm for motion planning with six degrees of freedom, Artif. Intell. 31(3), 295–353 (1987)

    Article  MATH  Google Scholar 

  69. L. Joskowicz, R.H. Taylor: Interference-free insertion of a solid body into a cavity: an algorithm and a medical application, Int. J. Robot. Res. 15(3), 211–229 (1996)

    Article  Google Scholar 

  70. H. Hirukawa: On motion planning of polyhedra in contact, Workshop Algorithm. Fund. Robot. (Toulouse 1996) pp. 381–391

    Google Scholar 

  71. S.J. Buckley: Planning compliant motion strategies, Proc. Int. Symp. Intell. Contr. (1988) pp. 338–343

    Google Scholar 

  72. E. Sacks: Path planning for planar articulated robots using configuration spaces and compliant motion, IEEE Trans. Robot. Autom. 19(3), 381–390 (2003)

    Article  Google Scholar 

  73. C. Laugier: Planning fine motion strategies by reasoning in the contact space, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1989) pp. 653–659

    Google Scholar 

  74. B.J. McCarragher, H. Asada: A discrete event approach to the control of robotic assembly tasks, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1993) pp. 331–336

    Google Scholar 

  75. B.J. McCarragher, H. Asada: The discrete event modeling and trajectory planning of robotic assembly tasks, ASME J. Dyn. Syst. Meas. Contr. 117, 394–400 (1995)

    Article  MATH  Google Scholar 

  76. R. Suárez, L. Basañez, J. Rosell: Using configuration and force sensing in assembly task planning and execution, Proc. Int. Symp. Assem. Task Plan. (1995) pp. 273–279

    Google Scholar 

  77. H. Hirukawa, Y. Papegay, T. Matsui: A motion planning algorithm for convex polyhedra in contact under translation and rotation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Diego, 1994) pp. 3020–3027

    Google Scholar 

  78. X. Ji, J. Xiao: Planning motion compliant to complex contact states, Int. J. Robot. Res. 20(6), 446–465 (2001)

    Article  Google Scholar 

  79. L.E. Kavraki, P. Svestka, J.C. Latombe, M. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  80. B. Hannaford, P. Lee: Hidden Markov model analysis of force/torque information in telemanipulation, Int. J. Robot. Res. 10(5), 528–539 (1991)

    Article  Google Scholar 

  81. G.E. Hovland, B.J. McCarragher: Hidden Markov models as a process monitor in robotic assembly, Int. J. Robot. Res. 17(2), 153–168 (1998)

    Article  Google Scholar 

  82. T. Takahashi, H. Ogata, S. Muto: A method for analyzing human assembly operations for use in automatically generating robot commands, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 2 (Atlanta 1993) pp. 695–700

    Google Scholar 

  83. P. Sikka, B.J. McCarragher: Rule-based contact monitoring using examples obtained by task demonstration, Proc. 15th Int. Jt. Conf. Artif. Intell. (Nagoya 1997) pp. 514–521

    Google Scholar 

  84. E. Cervera, A. Del Pobil, E. Marta, M. Serna: Perception-based learning for motion in contact in task planning, J. Intell. Robot. Syst. 17(3), 283–308 (1996)

    Article  Google Scholar 

  85. L.M. Brignone, M. Howarth: A geometrically validated approach to autonomous robotic assembly, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (Lausanne 2002) pp. 1626–1631

    Google Scholar 

  86. M. Nuttin, J. Rosell, R. Suárez, H. Van Brussel, L. Basañez, J. Hao: Learning approaches to contact estimation in assembly tasks with robots, Proc. 3rd Eur. Workshop Learn. Robot. (Heraklion 1995)

    Google Scholar 

  87. L.J. Everett, R. Ravari, R.A. Volz, M. Skubic: Generalized recognition of single-ended contact formations, IEEE Trans. Robot. Autom. 15(5), 829–836 (1999)

    Article  Google Scholar 

  88. M. Skubic, R.A. Volz: Identifying single-ended contact formations from force sensor patterns, IEEE Trans. Robot. Autom. 16(5), 597–603 (2000)

    Article  Google Scholar 

  89. S. Hirai, H. Asada: Kinematics and statics of manipulation using the theory of polyhedral convex cones, Int. J. Robot. Res. 12(5), 434–447 (1993)

    Article  Google Scholar 

  90. H. Hirukawa, T. Matsui, K. Takase: Automatic determination of possible velocity and applicable force of frictionless objects in contact from a geometric model, IEEE Trans. Robot. Autom. 10(3), 309–322 (1994)

    Article  Google Scholar 

  91. B.J. McCarragher, H. Asada: Qualitative template matching using dynamic process models for state transition recognition of robotic assembly, ASME J. Dyn. Syst. Meas. Contr. 115(2), 261–269 (1993)

    Article  Google Scholar 

  92. T.M. Schulteis, P.E. Dupont, P.A. Millman, R.D. Howe: Automatic identification of remote environments, Proc. ASME Dyn. Syst. Contr. Div. (Atlanta 1996) pp. 451–458

    Google Scholar 

  93. A.O. Farahat, B.S. Graves, J.C. Trinkle: Identifying contact formations in the presence of uncertainty, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (Pittsburg 1995) pp. 59–64

    Google Scholar 

  94. J. Xiao, L. Zhang: Contact constraint analysis and determination of geometrically valid contact formations from possible contact primitives, IEEE Trans. Robot. Autom. 13(3), 456–466 (1997)

    Article  Google Scholar 

  95. H. Mosemann, T. Bierwirth, F.M. Wahl, S. Stoeter: Generating polyhedral convex cones from contact graphs for the identification of assembly process states, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2000) pp. 744–749

    Google Scholar 

  96. J. Xiao, L. Zhang: Towards obtaining all possible contacts – growing a polyhedron by its location uncertainty, IEEE Trans. Robot. Autom. 12(4), 553–565 (1996)

    Article  Google Scholar 

  97. M. Spreng: A probabilistic method to analyze ambiguous contact situations, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Atlanta 1993) pp. 543–548

    Google Scholar 

  98. N. Mimura, Y. Funahashi: Parameter identification of contact conditions by active force sensing, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Diego 1994) pp. 2645–2650

    Google Scholar 

  99. B. Eberman: A model-based approach to Cartesian manipulation contact sensing, Int. J. Robot. Res. 16(4), 508–528 (1997)

    Article  Google Scholar 

  100. T. Debus, P. Dupont, R. Howe: Contact state estimation using multiple model estimation and hidden Markov model, Int. J. Robot. Res. 23(4-5), 399–413 (2004)

    Article  Google Scholar 

  101. J. De Geeter, H. Van Brussel, J. De Schutter, M. Decréton: Recognizing and locating objects with local sensors, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Minneapolis 1996) pp. 3478–3483

    Google Scholar 

  102. J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimating first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robot. Res. 18(12), 1161–1184 (1999)

    Article  Google Scholar 

  103. T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyhedral contact formation identification for autonomous compliant motion: exact nonlinear bayesian filtering, IEEE Trans Robot. 21(1), 124–129 (2005)

    Article  Google Scholar 

  104. T. Lefebvre, H. Bruyninckx, J. De Schutter: Online statistical model recognition and state estimation for autonomous compliant motion systems, IEEE Trans. Syst. Man Cybern. Part C Special Issue on ``Pattern Recognition for Autonomous Manipulation in Robotic Systemsʼʼ 35(1), 16–29 (2005)

    Google Scholar 

  105. K. Gadeyne, T. Lefebvre, H. Bruyninckx: Bayesian hybrid model-state estimation applied to simultaneous contact formation recognition and geometrical parameter estimation, Int. J. Robot. Res. 24(8), 615–630 (2005)

    Article  Google Scholar 

  106. K. Kitagaki, T. Ogasawara, T. Suehiro: Methods to detect contact state by force sensing in an edge mating task, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Atlanta 1993) pp. 701–706

    Google Scholar 

  107. T. Lefebvre, H. Bruyninckx, J. De Schutter: Task planning with active sensing for autonomous compliant motion, Int. J. Robot. Res. 24(1), 61–82 (2005)

    Article  Google Scholar 

  108. T. Debus, P. Dupont, R. Howe: Distinguishability and identifiability testing of contact state models, Adv. Robot. 19(5), 545–566 (2005)

    Article  Google Scholar 

  109. J. Park, R. Cortesao, O. Khatib: Multi-contact compliant motion control for robotic manipulators, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (New Orleans 2004) pp. 4789–4794

    Google Scholar 

  110. W. Meeussen, J. De Schutter, H. Bruyninckx, J. Xiao, E. Staffetti: Integration of planning and execution in force controlled compliant motion, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2005)

    Google Scholar 

  111. D.E. Koditschek: Exact robot navigation by means of potential functions: some topological considerations, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Raleigh 1987) pp. 1–6

    Google Scholar 

  112. E. Rimon, D.E. Koditschek: Exact robot navigation using artificial potential fields, IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  113. E. Rimon, D.E. Koditschek: The construction of analytic diffeomorphisms for exact robot navigation on star worlds, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Scottsdale 1989) pp. 21–26

    Google Scholar 

  114. J. Barraquand, J.-C. Latombe: Robot motion planning: a distributed representation approach, Int. J. Robot. Res. 10(6), 628–649 (1991)

    Article  Google Scholar 

  115. C.I. Connolly, J.B. Burns, R. Weiss: Path planning using Laplaceʼs equation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Cincinnati 1990) pp. 2102–2106

    Google Scholar 

  116. C.I. Connolly, R.A. Grupen: One the applications of harmonic functions to robotics, J. Robot. Syst. 10(7), 931–946 (1993)

    Article  MATH  Google Scholar 

  117. S.H.J. Feder, E.J.-J. Slotine: Real-time path planning using harmonic potentials in dynamic environments, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Albuquerque 1997) pp. 811–874

    Google Scholar 

  118. J.-O. Kim, P. Khosla: Real-time obstacle avoidance using harmonic potential functions, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Sacramento 1991) pp. 790–796

    Google Scholar 

  119. K. Sato: Collision avoidance in multi-dimensional space using Laplace potential, Proc. 15th Conf. Robot. Soc. Jpn. (1987), 155–156

    Google Scholar 

  120. S.M. LaValle, P. Konkimalla: Algorithms for computing numerical optimal feedback motion strategies, Int. J. Robot. Res. 20(9), 729–752 (2001)

    Article  Google Scholar 

  121. A. van der Schaft, H. Schumacher: An Introduction to Hybrid Dynamical Systems (Springer, Belin, Heidelberg 2000)

    MATH  Google Scholar 

  122. W. Choi, J.-C. Latombe: A reactive architecture for planning and executing robot motions with incomplete knowledge, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Vol. 1 (Osaka 1991) pp. 24–29

    Google Scholar 

  123. D. Conner, H. Choset, A. Rizzi: Integrated planning and control for convex-bodied nonholonomic systems using local feedback control policies, Proc. Robot.: Sci. Syst. (Philadelphia 2006)

    Google Scholar 

  124. D.C. Conner, A.A. Rizzi, H. Choset: Composition of local potential functions for global robot control and navigation, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (Las Vegas 2003) pp. 3546–3551

    Google Scholar 

  125. S.R. Lindemann, S.M. LaValle: Smooth feedback for car-like vehicles in polygonal environments, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Rome 2007)

    Google Scholar 

  126. L. Yang, S.M. LaValle: The sampling-based neighborhood graph: a framework for planning and executing feedback motion strategies, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Taipei 2003)

    Google Scholar 

  127. C. Belta, V. Isler, G.J. Pappas: Discrete abstractions for robot motion planning and control in polygonal environments, IEEE Trans. Robot. Autom. 21(5), 864–871 (2005)

    Google Scholar 

  128. R.R. Burridge, A.A. Rizzi, D.E. Koditschek: Sequential composition of dynamically dexterous robot behaviors, Int. J. Robot. Res. 18(6), 534–555 (1999)

    Article  Google Scholar 

  129. S.R. Lindemann, S.M. LaValle: Computing smooth feedback plans over cylindrical algebraic decompositions, Proc. Robot.: Sci. Syst. (RSS) (Philadephia 2006)

    Google Scholar 

  130. Y. Yang, O. Brock: Elastic roadmaps: globally task-consitent motion for autonomous mobile manipulation, Proc. Robot.: Sci. Syst. (RSS) (Philadelphia 2006)

    Google Scholar 

  131. S. Quinlan, O. Khatib: Elastic bands: connecting path planning and control, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 2 (Atlanta 1993) pp. 802–807

    Google Scholar 

  132. M. Khatib, H. Jaouni, R. Chatila, J.-P. Laumond: How to implement dynamic paths, Proc. Int. Symp. Exp. Robot. (1997) pp. 225–236, Preprints

    Google Scholar 

  133. O. Brock, O. Khatib: Elastic strips: a framework for motion generation in human environments, Int. J. Robot. Res. 21(12), 1031–1052 (2002)

    Article  Google Scholar 

  134. M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, J. Dyn. Syst. Meas. Contr. 103(2), 126–133 (1981)

    Article  Google Scholar 

  135. R. Featherstone, S. Sonck, O. Khatib: A general contact model for dynamically-decoupled force/motion control, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Detroit 1999) pp. 3281–3286

    Google Scholar 

  136. J. Park, R. Cortes ao, O. Khatib: Multi-contact compliant motion control for robotic manipulators, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (New Orleans 2004) pp. 4789–4794

    Google Scholar 

  137. J. Park, O. Khatib: Multi-link multi-contact force control for manipulators, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Barcelona 2005)

    Google Scholar 

  138. D.C. Ruspini, O. Khatib: A framework for multi-contact multi-body dynamic simulation and haptic display, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (Takamatsu 2000) pp. 1322–1327

    Google Scholar 

  139. K.-S. Chang, R. Holmberg, O. Khatib: The augmented object model: cooperative manipluation and parallel mechanism dynamics, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Francisco 2000) pp. 470–475

    Google Scholar 

  140. O. Khatib: Object Manipulation in a Multi-Effector Robot System. In: Robotics Research 4, ed. by R. Bolles, B. Roth (MIT Press, Cambridge 1988) pp. 137–144

    Google Scholar 

  141. D. Williams, O. Khatib: The virtual linkage: a model for internal forces in multi-grasp manipulation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 1 (Altanta 1993) pp. 1030–1035

    Google Scholar 

  142. J.A. Adams, R. Bajcsy, J. Kosecka, V. Kuma, R. Mandelbaum, M. Mintz, R. Paul, C. Wang, Y. Yamamoto, X. Yun: Cooperative material handling by human and robotic agents: module development and system synthesis, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (Pittsburgh 1995) pp. 200–205

    Google Scholar 

  143. S. Hayati: Hybrid postiion/force control of multi-arm cooperating robots, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Francisco 1986) pp. 82–89

    Google Scholar 

  144. D. Jung, G. Cheng, A. Zelinsky: Experiments in realizing cooperation between autonomous mobile robots, Proc. Int. Symp. Exp. Robot. (1997) pp. 513–524

    Google Scholar 

  145. T.-J. Tarn, A.K. Bejczy, X. Yun: Design of dynamic control of two cooperating robot arms: Closed chain formulation, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1987) pp. 7–13

    Google Scholar 

  146. M. Uchiyama, P. Dauchez: A symmetric hybrid position/force control scheme for the coordination of two robots, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Philadelphia 1988) pp. 350–356

    Google Scholar 

  147. X. Yun, V.R. Kumar: An approach to simultaneious control fo trajecotry and integraction forces in dual-arm configurations, IEEE Trans. Robot. Autom. 7(5), 618–625 (1991)

    Article  Google Scholar 

  148. Y.F. Zheng, J.Y.S. Luh: Joint torques for control of two coordinated moving robots, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Francisco 1986) pp. 1375–1380

    Google Scholar 

  149. J. Russakow, O. Khatib, S.M. Rock: Extended operational space formation for serial-to-parallel chain (branching) manipulators, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 1 (Nagoya 1995) pp. 1056–1061

    Google Scholar 

  150. K.-S. Chang, O. Khatib: Operational space dynamics: efficient algorithms for modelling and control of branching mechanisms, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (San Francisco 2000) pp. 850–856

    Google Scholar 

  151. K. Kreutz-Delgado, A. Jain, G. Rodriguez: Recursive formulation of operational space control, Int. J. Robot. Res. 11(4), 320–328 (1992)

    Article  Google Scholar 

  152. B. Bayle, J.-Y. Fourquet, M. Renaud: A coordination strategy for mobile manipulation, Proc. Int. Conf. Intell. Auton. Syst. (Venice 2000) pp. 981–988

    Google Scholar 

  153. B. Bayle, J.-Y. Fourquet, M. Renaud: Generalized path generation for a mobile manipulator, Proc. Int. Conf. Mech. Des. Prod. (Cairo 2000) pp. 57–66

    Google Scholar 

  154. B. Bayle, J.-Y. Fourquet, M. Renaud: Using manipulability with nonholonomic mobile manipulators, Proc. Int. Conf. Field Serv. Robot. (Helsinki 2001) pp. 343–348

    Google Scholar 

  155. J. Peters, S. Schaal: Reinforcement learning for operational space control, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Rome 2007)

    Google Scholar 

  156. T. Simeon, J. Cortes, A. Sahbani, J.P. Laumond: A manipulation planner for pick and place operations under continuous grasps and placements, Proc. IEEE Int. Conf. Robot. Autom. (2002)

    Google Scholar 

  157. A. Miller, P. Allen: Examples of 3D grasp quality computations, Robot. Autom. 1999. Proc. 1999 IEEE Int. Conf. on, Vol. 2 (1999)

    Google Scholar 

  158. A.T. Miller: GraspIt: A Versatile Simulator for Robotic Grasping. Ph.D. Thesis (Department of Computer Science, Columbia University 2001)

    Google Scholar 

  159. G. Wilfong: Motion panning in the presence of movable obstacles, Proc. ACM Symp. Computat. Geom. (1988) pp. 279–288

    Google Scholar 

  160. M. Erdmann, T. Lozano-Perez: On multiple moving objects, IEEE Int. Conf. Robot. Autom. (San Francisco 1986) pp. 1419–1424

    Google Scholar 

  161. P.C. Chen, Y.K. Hwang: Pracitcal path planning among movable obstacles, Proc. IEEE Int. Conf. Robot. Autom. (1991) pp. 444–449

    Google Scholar 

  162. M. Stilman, J.J. Kuffner: Navigation among movable obstacles: real-time reasoning in complex environments, Int. J. Human Robot. 2(4), 1–24 (2005)

    Article  Google Scholar 

  163. M. Stilman, J.-U. Shamburek, J.J. Kuffner, T. Asfour: Manipulation planning among movable obstacles, Proc. IEEE Int. Conf. Robot. Autom. (ICRAʼ07) (2007)

    Google Scholar 

  164. D. Nieuwenhuisen, A.F. van der Stappen, M.H. Overmars: An effective framework for path planning amidst movable obstacles, Workshop Algorithm. Fund. Robot. (2006)

    Google Scholar 

  165. K.M. Lynch, M.T. Mason: Stable pushing: mechanics, controllability, and planning, Int. J. Robot. Res. 15(6), 533–556 (1996)

    Article  Google Scholar 

  166. P. Tang, J. Xiao: Generation of point-contact state space between strictly curved objects. In: Robotics Science and Systems II, ed. by G.S. Sukhatme, S. Schaal, W. Burgard, D. Fox (MIT Press, Cambridge 2007) pp. 239–246

    Google Scholar 

  167. H. Nakagaki, K. Kitagaki, T. Ogasawara, H. Tsukune: Study of deformation and insertion tasks of a flexible wire, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1997) pp. 2397–2402

    Google Scholar 

  168. W. Kraus Jr., B.J. McCarragher: Case studies in the manipulation of flexible parts using a hybrid position/force approach, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1997) pp. 367–372

    Google Scholar 

  169. J.Y. Kim, D.J. Kang, H.S. Cho: A flexible parts assembly algorithm based on a visual sensing system, Proc. Int. Symp. Assem. Task Plan. (2001) pp. 417–422

    Google Scholar 

  170. B.J. Unger, A. Nocolaidis, P.J. Berkelman, A. Thompson, R.L. Klatzky, R.L. Hollis: Comparison of 3-D haptic peg-in-hole tasks in real and virtual environments, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2001) pp. 1751–1756

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver Brock Prof , James Kuffner Prof or Jing Xiao Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Brock, O., Kuffner, J., Xiao, J. (2008). Motion for Manipulation Tasks. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics