Advertisement

Introducing the Iteration in sPBC

  • Hermenegilda Maciá
  • Valentín Valero
  • Diego Cazorla
  • Fernando Cuartero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3235)

Abstract

The main goal of this paper is to extend sPBC with the iteration operator, providing an operational semantics for the language, as well as a denotational semantics, which is based on stochastic Petri nets. With this new operator we can model some repetitive behaviours, and then we obtain a formal method that can be easily used for the design of communication protocols and distributed systems.

Keywords

Stochastic Petri Nets Stochastic Process Algebra Performance Evaluation Petri Box Calculus 

References

  1. 1.
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)zbMATHGoogle Scholar
  2. 2.
    Bernando, M., Gorrieri, R.: A Tutorial on EMPA: A Theory of Concurrent Process with Nondeterminism, Priorities, Probabilities and Time. Theorical Computer Science 202, 1–54 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Best, E., Devillers, R., Koutny, M.: Petri Nets, Process Algebras and Programming Languages. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1492, pp. 1–84. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Best, E., Devillers, R., Koutny, M.: A Consistent Model for Nets and Process Algebras. In: Bergstra, J.A., Ponse, A., Smolka, S.S. (eds.) The Handbook on Process Algebras, ch. 14, pp. 873–944. North Holland, Amsterdam (2001)CrossRefGoogle Scholar
  5. 5.
    Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATC. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Best, E., Devilllers, R., Hall, J.: The Box Calculus: A New Causal Algebra with Multi-label Communication. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 21–69. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  7. 7.
    Best, E., Koutny, M.: A Refined View of the Box Algebra. In: DeMichelis, G., Díaz, M. (eds.) ICATPN 1995. LNCS, vol. 935, pp. 1–20. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Hermanns, H., Rettelbach, M.: Syntax, Semantics, Equivalences and Axioms for MTIPP. In: Herzog, U., Rettelbach, M. (eds.) Proc. of the 2nd Workshop on Process Algebra and Performance Modelling, Regensberg/Erlangen, pp. 71–88 (1994)Google Scholar
  9. 9.
    Hillston, J.: The nature of the synchronization. In: Int. Workshop on Process Algebra and Performance Modelling (1994)Google Scholar
  10. 10.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Koutny, M.: A Compositional Model of Time Petri Nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 303–322. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Macià, H.: sPBC: Una Extensión Markoviana del Petri Box Calculus. PhD thesis, Departamento de Informática, Universidad de Castilla-La Mancha (2003) (in spanish)Google Scholar
  13. 13.
    Macià, H., Valero, V., Cuartero, F., Pelayo, F.L.: A new proposal for the synchronization in sPBC. In: Proc. Third IEEE Int. Conference on Application of Concurrent to System Design (ACSD 2003), pp. 216–225. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  14. 14.
    Macià, H., Valero, V., de Frutos, D.: sPBC: A Markovian Extension of Finite Petri Box Calculus. In: Proc. 9th IEEE Int. Workshop on Petri Nets and Performance Models (PNPM 2001), pp. 207–216. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  15. 15.
    Marroquín, O., de Frutos, D.: Extending the Petri Box Calculus with Time. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 195–207. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)zbMATHGoogle Scholar
  17. 17.
    Ribaudo, M.: Stochastic Petri Net Semantics for Stochastic Process Algebra. In: Proc. 6th Int. Workshop on Petri Nets and Performance Models (PNPM 1995), Durham (1995)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2004

Authors and Affiliations

  • Hermenegilda Maciá
    • 1
  • Valentín Valero
    • 1
  • Diego Cazorla
    • 1
  • Fernando Cuartero
    • 1
  1. 1.Escuela Politécnica Superior de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations