Language-Dependent and Language-Independent Approaches to Cross-Lingual Text Retrieval

  • Jaap Kamps
  • Christof Monz
  • Maarten de Rijke
  • Börkur Sigurbjörnsson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3237)


We investigate the effectiveness of language-dependent approaches to document retrieval, such as stemming and decompounding, and constrast them with language-independent approaches, such as character n-gramming. In order to reap the benefits of more than one type of approach, we also consider the effectiveness of the combination of both types of approaches. We focus on document retrieval in nine European languages: Dutch, English, Finnish, French, German, Italian, Russian, Spanish and Swedish. We look at four different information retrieval tasks: monolingual, bilingual, multilingual, and domain-specific retrieval. The experimental evidence is obtained using the 2003 test suite of the cross-language evaluation forum (CLEF).


Information Retrieval Machine Translation Retrieval Model European Language Information Retrieval Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matthews, P.H.: Morphology. Cambridge University Press, Cambridge (1991)Google Scholar
  2. 2.
    Hollink, V., Kamps, J., Monz, C., de Rijke, M.: Monolingual document retrieval for European languages. Information Retrieval 6 (2003)Google Scholar
  3. 3.
    Harman, D.: How effective is suffixing? Journal of the American Society for Information Science 42, 7–15 (1991)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Hull, D.: Stemming algorithms – a case study for detailed evaluation. Journal of the American Society for Information Science 47, 70–84 (1996)CrossRefGoogle Scholar
  5. 5.
    Monz, C., de Rijke, M.: Shallow morphological analysis in monolingual information retrieval for Dutch, German and Italian. In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 262–277. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Kamps, J., Monz, C., de Rijke, M.: Combining evidence for cross-language information retrieval. In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2002. LNCS. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    CLEF: Cross language evaluation forum (2003),
  8. 8.
    Buckley, C., Singhal, A., Mitra, M.: New retrieval approaches using SMART: TREC 4. In: Harman, D. (ed.) The Fourth Text REtrieval Conference (TREC-4), National Institute for Standards and Technology, pp. 25–48. NIST Special Publication 500-236 (1996)Google Scholar
  9. 9.
    Snowball: Stemming algorithms for use in information retrieval (2003),
  10. 10.
    Frakes, W.: Stemming algorithms. In: Frakes, W., Baeza-Yates, R. (eds.) Information Retrieval: Data Structures & Algorithms, pp. 131–160. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  11. 11.
    Porter, M.: An algorithm for suffix stripping. Program 14, 130–137 (1980)Google Scholar
  12. 12.
    Pohlmann, R., Kraaij, W.: Improving the precision of a text retrieval system with compound analysis. In: Landsbergen, J., Odijk, J., van Deemter, K., Veldhuijzen van Zanten, G. (eds.) Proceedings of the 7th Computational Linguistics in the Netherlands Meeting (CLIN 1996), pp. 115–129 (1996)Google Scholar
  13. 13.
    McNamee, P., Mayfield, J.: Character n-gram tokenization for European language text retrieval. Information Retrieval 6 (2003)Google Scholar
  14. 14.
    CLEF-Neuchâtel: CLEF resources at the University of Neuchâtel (2003),
  15. 15.
    Rocchio Jr., J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  16. 16.
    Savoy, J.: Combining multiple strategies for effective monolingual and cross-language retrieval. Information Retrieval 6 (2003)Google Scholar
  17. 17.
    Lee, J.: Combining multiple evidence from different properties of weighting schemes. In: Fox, E., Ingwersen, P., Fidel, R. (eds.) Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 180–188. ACM Press, New York (1995)CrossRefGoogle Scholar
  18. 18.
    Fox, E., Shaw, J.: Combination of multiple searches. In: Harman, D. (ed.) The Second Text REtrieval Conference (TREC-2), National Institute for Standards and Technology, pp. 243–252. NIST Special Publication 500-215 (1994)Google Scholar
  19. 19.
    Efron, B.: Bootstrap methods: Another look at the jackknife. Annals of Statistics 7, 1–26 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York (1993)zbMATHGoogle Scholar
  21. 21.
    Worldlingo: Online translator (2003),
  22. 22.
    PROMT-Reverso: Online translator (2003),
  23. 23.
    Babylon: Online dictionary (2003),
  24. 24.
    Kamps, J., Monz, C., de Rijke, M., Sigurbjörnsson, B.: The University of Amsterdam at CLEF-2003. In: Peters, C. (ed.) Results of the CLEF 2003 Cross-Language System Evaluation Campaign, pp. 71–78 (2003)Google Scholar
  25. 25.
    Schott, H. (ed.): Thesaurus Sozialwissenschaften. Informationszentrum Sozialwissenschaften, Bonn (2002) 2 Bände: Alphabetischer und systematischer TeilGoogle Scholar
  26. 26.
    Robertson, S., Walker, S., Beaulieu, M.: Experimentation as a way of life: Okapi at TREC. Information Processing & Management 36, 95–108 (2000)CrossRefGoogle Scholar
  27. 27.
    Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, Center for Telematics and Information Technology, University of Twente (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jaap Kamps
    • 1
  • Christof Monz
    • 1
  • Maarten de Rijke
    • 1
  • Börkur Sigurbjörnsson
    • 1
  1. 1.Language & Inference Technology GroupUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations