A 1.5-Approximation Algorithm for Sorting by Transpositions and Transreversals

  • Tzvika Hartman
  • Roded Sharan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3240)


One of the most promising ways to determine evolutionary distance between two organisms is to compare the order of appearance of orthologous genes in their genomes. The resulting genome rearrangement problem calls for finding a shortest sequence of rearrangement operations that sorts one genome into the other. In this paper we provide a 1.5-approximation algorithm for the problem of sorting by transpositions and transreversals, improving on a five years old 1.75 ratio for this problem. Our algorithm is also faster than current approaches and requires \(O(n^{3/2} \sqrt{\log{n}})\) time for n genes.


14th Annual Symposium Signed Permutation Black Edge Breakpoint Graph Canonical Labelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palmer, J.D., Herbon, L.A.: Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion. Nucleic Acids Research 14, 9755–9764 (1986)CrossRefGoogle Scholar
  2. 2.
    Hoot, S.B., Palmer, J.D.: Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J. Molecular Evooution 38, 274–281 (1994)Google Scholar
  3. 3.
    Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM Journal on Discrete Mathematics 12, 91–110 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM 46, 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete Mathematics 11, 224–240 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow (1999)Google Scholar
  7. 7.
    Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theoretical Computer Science 210(2), 327–339 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lin, G.H., Xue, G.: Signed genome rearrangements by reversals and transpositions: Models and approximations. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 71–80. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Meidanis, J., Walter, M.E., Dias, Z.: Reversal distance of signed circular chromosomes (2000) (manuscript)Google Scholar
  11. 11.
    Bafna, V., Pevzner, P.A.: Genome rearragements and sorting by reversals. SIAM Journal on Computing 25, 272–289 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kaplan, H., Verbin, E.: Effficient data structures and a new randomized approach for sorting signed permutations by reversals. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 170–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. Assoc. Comput. Mach. 32, 652–686 (1985)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tzvika Hartman
    • 1
  • Roded Sharan
    • 2
  1. 1.Dept. of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.International Computer Science InstituteBerkeleyUSA

Personalised recommendations