Finding Missing Patterns

  • Shunsuke Inenaga
  • Teemu Kivioja
  • Veli Mäkinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3240)


Consider the following problem: Find the shortest pattern that does not occur in a given text. To make the problem non-trivial, the pattern is required to consist only of characters that occur in the text. This problem can be solved easily in linear time using the suffix tree of the text. In this paper, we study an extension of this problem, namely the missing patterns problem: Find the shortest pair of patterns that do not occur close to each other in a given text, i.e., the distance between their occurrences is always greater than a given threshold α. We show that the missing patterns problem can be solved in O( min (αnlogn,n 2)) time, where n is the size of the text. For the special case where both pairs are required to have the same length, we give an algorithm with time complexity O(αn log log n). The problem is motivated by optimization of multiplexed nested-PCR.


Multiplex Polymerase Chain Reaction Nest Polymerase Chain Reaction Pattern Problem Pattern Pair Biological Motivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Apostolico, A., Lewenstein, M.: Inverse Pattern Matching. J. Algorithms 24(2), 325–339 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andersson, A., Larsson, N.J., Swanson, K.: Suffix trees on words. Algorithmica 23(3), 246–260 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science (2002)Google Scholar
  4. 4.
    Apostolico, A.: Pattern discovery and the algorithmics of surprise. Artificial Intelligence and Heuristic Methods for Bioinformatics, 111–127 (2003)Google Scholar
  5. 5.
    Ga̧sieniec, L., Indyk, P., Krysta, P.: External Inverse Pattern Matching. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 90–101. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Gusfield, D.: Algorithms on strings, trees and sequences: Computer science and computational biology. Cambridge University Press, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Karp, R., Rabin, M.: Efficient randomized pattern-matching algorithms. IBM Journal of Research and Development 31, 249–260 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kärkkäinen, J., Ukkonen, E.: Sparse suffix trees. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 219–230. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM Journal on Computing 6(2), 323–350 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Information and Computation 185(1), 41–55 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    McCreight, E.M.: A space economical suffix tree construction algorithm. Journal of the ACM 23, 262–272 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nicodème, P., Steyaert, J.-M.: Selecting optimal oligonucleotide primers for multiplex PCR. In: Proc. of the 5th International Conference on Intelligent Systems for Molecular Biology (ISMB 1997), pp. 210–213 (1997)Google Scholar
  13. 13.
    Shinohara, A., Takeda, M., Arikawa, S., Hirao, M., Hoshino, H., Inenaga, S.: Finding Best Patterns Practically. In: Arikawa, S., Shinohara, A. (eds.) Progress in Discovery Science. LNCS (LNAI), vol. 2281, pp. 307–317. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wang, J., Shapiro, B., Shasha, D.: Pattern Discovery in Biomolecular Data. Oxford University Press, Oxford (1999)Google Scholar
  16. 16.
    Weiner, P.: Linear pattern matching algorithms. In: Proc. IEEE 14th Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shunsuke Inenaga
    • 1
  • Teemu Kivioja
    • 1
  • Veli Mäkinen
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations