Advertisement

Approximation Algorithms for the Selection of Robust Tag SNPs

  • Yao-Ting Huang
  • Kui Zhang
  • Ting Chen
  • Kun-Mao Chao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3240)

Abstract

Recent studies have shown that the chromosomal recombination only takes places at some narrow hotspots. Within the chromosomal region between these hotspots (called haplotype block), little or even no recombination occurs, and a small subset of SNPs (called tag SNPs) is sufficient to capture the haplotype pattern of the block. In reality, the tag SNPs may be genotyped as missing data, and we may fail to distinguish two distinct haplotypes due to the ambiguity caused by missing data. In this paper, we formulate this problem as finding a set of SNPs (called robust tag SNPs) which is able to tolerate missing data. To find robust tag SNPs, we propose two greedy and one LP-relaxation algorithms which give solutions of \((m+1)\ln\frac{K(K-1)}{2}\), \(\ln((m+1)\frac{K(K-1)}{2})\), and O(mln K) approximation respectively, where m is the number of SNPs allowed for missing data and K is the number of patterns in the block.

Keywords

approximation algorithm haplotype block missing data SNP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bafna, V., Halldorsson, B.V., Schwartz, R., Clark, A.G., Istrail, S.: Haplotypes and Informative SNP Selection Algorithms: Don’t Block Out Information. In: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology, pp. 19–27 (2003)Google Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  3. 3.
    Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.: High- Resolution Haplotype Structure in the Human Genome. Nature Genetics 29, 229–232 (2001)CrossRefGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., Hacker, C.R., Kautzer, C.R., Lee, D.H., Marjoribanks, C., McDonough, D.P., et al.: Blocks of Limited Haplotype Diversity Revealed by High-Resolution Scanning of Human Chromosome 21. Science 294, 1719–1723 (2001)CrossRefGoogle Scholar
  6. 6.
    Zhang, K., Deng, M., Chen, T., Waterman, M.S., Sun, F.: A Dynamic Programming Algorithm for Haplotype Block Partitioning. Proceedings of the National Academy of Sciences of the United States of America 99, 7335–7339 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Zhang, K., Sun, F., Waterman, M.S., Chen, T.: Dynamic Programming Algorithms for Haplotype Block Partitioning: Applications to Human Chromosome 21 Haplotype Data. In: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology, pp. 332–340 (2003)Google Scholar
  8. 8.
    Zhao, J.H., Lissarrague, S., Essioux, L., Sham, P.C.: GENECOUNTING: Haplotype Analysis with Missing Genotypes. Bioinformatics 18, 1694–1695 (2002)CrossRefGoogle Scholar
  9. 9.
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yao-Ting Huang
    • 1
  • Kui Zhang
    • 2
  • Ting Chen
    • 3
  • Kun-Mao Chao
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaiwan
  2. 2.Section on Statistical Genetics, Department of BiostatisticsUniversity of Alabama at BirminghamUSA
  3. 3.Department of Biological SciencesUniversity of Southern CaliforniaUSA

Personalised recommendations