Skip to main content

Sequence Database Compression for Peptide Identification from Tandem Mass Spectra

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3240))

Abstract

The identification of peptides from tandem mass spectra is an important part of many high-throughput proteomics pipelines. In the high-throughput setting, the spectra are typically identified using software that matches tandem mass spectra with putative peptides from amino-acid sequence databases. The effectiveness of these search engines depends heavily on the completeness of the amino-acid sequence database used, but suitably complete amino-acid sequence databases are large, and the sequence database search engines typically have search times that are proportional to the size of the sequence database.

We demonstrate that the peptide content of an amino-acid sequence database can be represented by a reformulated amino-acid sequence database containing fewer amino-acid symbols than the original. In some cases, where the original amino-acid sequence database contains many redundant peptides, we have been able to reduce the size of the amino-acid sequence to almost half of its original size. We develop a lower bound for achievable compression and demonstrate empirically that regardless of the peptide redundancy of the original amino-acid sequence database, we can compress the sequence to within 15-25% of this lower bound. We believe this may provide a principled way to combine amino-acid sequence data from many sources without unduly bloating the resulting sequence database with redundant peptide sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edwards, N., Lippert, R.: Generating peptide candidates from amino-acid sequence databases for protein identification via mass spectrometry. In: Proceedings of the Second International Workshop on Algorithms in Bioinformatics, pp. 68–81. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Cieliebak, M., et al.: Algorithmic complexity of protein identification: Combinatorics of weighted strings. Discrete Applied Mathematics 137, 27–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eng, J., McCormack, A., Yates, J.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of American Society of Mass Spectrometry 5, 976–989 (1994)

    Article  Google Scholar 

  4. Perkins, D., et al.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1997)

    Article  Google Scholar 

  5. Bafna, V., Edwards, N.: SCOPE: A probabilistic model for scoring tandem mass spectra against a peptide database. Bioinformatics 17, S13–S21 (2001)

    Article  Google Scholar 

  6. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.L.: UniProt: the Universal Protein knowledgebase. Nucl. Acids. Res. 32, D115–119 (2004)

    Article  Google Scholar 

  7. Welcome to UniProt — UniProt [the Universal Protein Resource] [online, cited June 24, 2004], Available from http://www.uniprot.org/

  8. Kersey, P., Hermjakob, H., Apweiler, R.: VARSPLIC: Alternatively-spliced protein sequences derived from SWISS-PROT and TrEMBL. Bioinformatics 16, 1048–1049 (2000)

    Article  Google Scholar 

  9. UniProt/Swiss-Prot Tools [online, cited June 24, 2004], Available from: http://www.ebi.ac.uk/swissprot/tools.html

  10. CSC/ICSM Proteomics Section Home Page [online, cited June 24, 2004], Available from: http://csc-fserve.hh.med.ic.ac.uk/msdb.html

  11. The BLAST Databases [online, cited June 24, 2004], Available from: ftp://ftp.ncbi.nlm.nih.gov/blast/db/

  12. NRP (Non-Redundant Protein) Database [online, cited June 24, 2004], Available from: ftp://ftp.ncifcrf.gov/pub/nonredun/

  13. EBI Databases — International Protein Index [online, cited June 24, 2004], Available from: http://www.ebi.ac.uk/IPI/IPIhelp.html

  14. Garey, R., Johnson, D.: Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  16. Bains, W., Smith, G.: A novel method for nucleic acid sequence determination. Journal of Theoretical Biology 135, 303–307 (1988)

    Article  Google Scholar 

  17. Lysov, Y., Floretiev, V., Khorlyn, A., Khrapko, K., Shick, V., Mirzabekov, A.: DNA sequencing by hybridization with oligonucleotides. Dokl. Acad. Sci. USSR 303, 1508–1511 (1988)

    Google Scholar 

  18. Drmanac, R., Labat, I., Bruckner, I., Crkvenjakov, R.: Sequencing of megabase plus DNA by hybridization. Genomics 4, 114–128 (1989)

    Article  Google Scholar 

  19. Pevzner, P.A.: l-tuple DNA sequencing: Computer analysis. J. Biomol. Struct. Dyn. 7, 63–73 (1989)

    Google Scholar 

  20. de Bruijn, N.: A combinatorial problem. In: Proc. Kon. Ned. Akad. Wetensch., vol. 49, pp. 758–764 (1946)

    Google Scholar 

  21. Kwan, M.K.: Graphic programming using odd or even points. Chinese Mathematics 1, 273–277 (1962)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edwards, N., Lippert, R. (2004). Sequence Database Compression for Peptide Identification from Tandem Mass Spectra. In: Jonassen, I., Kim, J. (eds) Algorithms in Bioinformatics. WABI 2004. Lecture Notes in Computer Science(), vol 3240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30219-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30219-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23018-2

  • Online ISBN: 978-3-540-30219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics