Reconstructing Ancestral Gene Orders Using Conserved Intervals

  • Anne Bergeron
  • Mathieu Blanchette
  • Annie Chateau
  • Cedric Chauve
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3240)


Conserved intervals were recently introduced as a measure of similarity between genomes whose genes have been shuffled during evolution by genomic rearrangements. Phylogenetic reconstruction based on such similarity measures raises many biological, formal and algorithmic questions, in particular the labelling of internal nodes with putative ancestral gene orders, and the selection of a good tree topology. In this paper, we investigate the properties of sets of permutations associated to conserved intervals as a representation of putative ancestral gene orders for a given tree topology. We define set-theoretic operations on sets of conserved intervals, together with the associated algorithms, and we apply these techniques, in a manner similar to the Fitch-Hartigan algorithm for parsimony, to a subset of chloroplast genes of 13 species.


Gene Order Internal Node Ancestral Node Signed Permutation Round Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distances between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Implementation of operations on sets of conserved intervals. Technical report, Computer Science Department, UQAM (to appear)Google Scholar
  3. 3.
    Bergeron, A., Mixtaci, J., Stoye, J.: The reversal distance problem. In: Gascuel, O. (ed.) Mathematics of phylogeny and evolution, Oxford University Press, Oxford (2004)Google Scholar
  4. 4.
    Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Blanchette, M., Kunisawa, T., Sankoff, D.: Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 19(2), 193–203 (1999)CrossRefGoogle Scholar
  6. 6.
    Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement. Gene 172(1), GC11–17 (2001)Google Scholar
  7. 7.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13(3), 335–379 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)Google Scholar
  9. 9.
    Caprara, A.: Formulations and complexity of multiple sorting by reversals. In: 3rd Annual International Conference on Research in Computational Molecular Biology (RECOMB 1999), pp. 84–93. ACM Press, New York (1999)Google Scholar
  10. 10.
    Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A., Wang, L.S., Warnow, T., Wyman, S.K.: An empirical comparison of phylogenetic methods on chloroplast gene order data in campanulaceae. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families (DCAF 2000), pp. 99–212. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  11. 11.
    Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2003)Google Scholar
  12. 12.
    Fitch, W.: Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology 20, 406–416 (1971)CrossRefGoogle Scholar
  13. 13.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: 36th Annual Symposium on Foundations of Computer Science (FOCS 1995), pp. 581–592. IEEE Comput. Soc. Press, Los Alamitos (1995)Google Scholar
  14. 14.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hartigan, J.A.: Minimum mutation fits to a given tree. Biometrics 29, 53–65 (1973)CrossRefGoogle Scholar
  16. 16.
    Larget, B., Simon, D.L., Kadane, J.B.: Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J. R. Stat. Soc. Ser. B Stat. Methodol. 64(4), 681–693 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies from genecontent and gene-order data. In: Gascuel, O. (ed.) Mathematics of phylogeny and evolution, Oxford University Press, Oxford (2004) (to appear)Google Scholar
  19. 19.
    Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: 6th Pacific Symposium on Biocomputing (PSB 2001), pp. 583–594 (2001)Google Scholar
  20. 20.
    Sankoff, D.: Rearrangements and chromosomal evolution. Curr. Opin. Genet. Dev. 13(6), 583–587 (2003)CrossRefGoogle Scholar
  21. 21.
    Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5(3), 555–570 (1998)CrossRefGoogle Scholar
  22. 22.
    Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. U.S.A. 89(14), 6575–6579 (1992)CrossRefGoogle Scholar
  23. 23.
    Tang, J., Moret, B.M.E.: Scaling up accurate phylogenetic reconstruction from gene-order data. Bioinformatics 19(Suppl. 1), i305–312 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anne Bergeron
    • 1
  • Mathieu Blanchette
    • 2
  • Annie Chateau
    • 1
  • Cedric Chauve
    • 1
  1. 1.LaCIMUniversité du Québec à MontrealCanada
  2. 2.McGill Center for BioinformaticsCanada

Personalised recommendations