Advertisement

Joint Analysis of DNA Copy Numbers and Gene Expression Levels

  • Doron Lipson
  • Amir Ben-Dor
  • Elinor Dehan
  • Zohar Yakhini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3240)

Abstract

Genomic instabilities, amplifications, deletions and translocations are often observed in tumor cells. In the process of cancer pathogenesis cells acquire multiple genomic alterations, some of which drive the process by triggering overexpression of oncogenes and by silencing tumor suppressors and DNA repair genes. We present data analysis methods designed to study the overall transcriptional effects of DNA copy number alterations. Alterations can be measured using several techniques including microarray based hybridization assays. The data have unique properties due to the strong dependence between measurement values in close genomic loci. To account for this dependence in studying the correlation of DNA copy number to expression levels we develop versions of standard correlation methods that apply to genomic regions and methods for assessing the statistical significance of the observed results. In joint DNA copy number and expression data we define significantly altered submatrices as submatrices where a statistically significant correlation of DNA copy number to expression is observed. We develop heuristic approaches to identify these structures in data matrices. We apply all methods to several datasets, highlighting results that can not be obtained by direct approaches or without using the regional view.

Keywords

Comparative Genomic Hybridization Chromosomal Alteration Breast Cancer Dataset Resident Gene Silence Tumor Suppressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Supplement data, available at http://bioinfo.cs.technion.ac.il/cghexp/
  2. 2.
    Balsara, B.R., Testa, J.R.: Chromosomal imbalances in human lung cancer. Oncogene 21(45), 6877–6883 (2002)CrossRefGoogle Scholar
  3. 3.
    Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.: Tissue classification with gene expression profiles. In: Proceedings of RECOMB, pp. 54–64 (2000)Google Scholar
  4. 4.
    Ben-Dor, A., Friedman, N., Yakhini, Z.: Class discovery in gene expression data. In: Proceedings of RECOMB, pp. 31–38 (2001)Google Scholar
  5. 5.
    Bittner, M., et al.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406(6795), 536–540 (2000)CrossRefGoogle Scholar
  6. 6.
    Hedenfalk, I., et al.: Molecular classification of familial non-BRCA1/BRCA2 breast cancer. PNAS 100(5), 2532–2537 (2003)CrossRefGoogle Scholar
  7. 7.
    Hyman, E., Kauraniemi, P., Hautaniemi, S., Wolf, M., Mousses, S., Rozenblum, E., Ringner, M., Sauter, G., Monni, O., Elkahloun, A., Kallioniemi, O.P., Kallioniemi, A.: Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Research 62, 6240–6245 (2002)Google Scholar
  8. 8.
    Kallioniemi, O.P., Kallioniemi, A., Sudar, D., Rutovitz, D., Gray, J., Waldman, F., Pinkel, D.: Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol. 4(1), 41–46 (1993)Google Scholar
  9. 9.
    Linn, S.C., et al.: Gene expression patterns and gene copy number changes in DFSP. Amer J of Pathology 163(6), 2383–2395 (2003)CrossRefGoogle Scholar
  10. 10.
    Mertens, F., Johansson, B., Hoglund, M., Mitelman, F.: Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Research 57(13), 2765–2780 (1997)Google Scholar
  11. 11.
    Pinkel, D., et al.: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Gen. 20(2), 207–211 (1998)CrossRefGoogle Scholar
  12. 12.
    Platzer, P., et al.: Silence of chromosomal amplifications in colon cancer. Cancer Research 62(4), 1134–1138 (2002)Google Scholar
  13. 13.
    Pollack, J.R., Perou, C.M., Alizadeh, A.A., Eisen, M.B., Pergamenschikov, A., Williams, C.F., Jeffrey, S.S., Botstein, D., Brown, P.O.: Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics 23(1), 41–46 (1999)CrossRefGoogle Scholar
  14. 14.
    Pollack, J.R., et al.: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. PNAS 99(20), 12963–12968 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Doron Lipson
    • 1
  • Amir Ben-Dor
    • 2
  • Elinor Dehan
    • 3
  • Zohar Yakhini
    • 2
  1. 1.Computer Science DeptTechnionIsrael
  2. 2.Agilent LaboratoriesPalo Alto
  3. 3.Functional Genomics UnitSheba Medical CenterIsrael

Personalised recommendations