Skip to main content

Fitness Distributions and GA Hardness

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

Considerable research effort has been spent in trying to formulate a good definition of GA-Hardness. Given an instance of a problem, the objective is to estimate the performance of a GA. Despite partial successes current definitions are still unsatisfactory. In this paper we make some steps towards a new, more powerful way of assessing problem difficulty based on the properties of a problem’s fitness distribution. We present experimental results that strongly support this idea

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Morgan Kaufmann, San Francisco (1989)

    MATH  Google Scholar 

  2. Forrest, S., Mitchell, M.: Relative Building Block Fitness and the Building Block Hypothesis. In: Whitley, D. (ed.) Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  3. Goldberg, D.E.: Making genetic algorithm fly: a lesson from the Wright brothers. Advanced Technology For Developers 2, 1–8 (1993)

    Google Scholar 

  4. Rana, S.: Examining the Role of Local Optima and Schema Processing in Genetic Search. PhD thesis, Colorado State University (1998)

    Google Scholar 

  5. Grefenstette, J.J.: Deception considered harmful. In: Whitley, D. (ed.) Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  6. Jansen, T.: On Classifications of Fitness Functions. Reihe CI 76/99, SFB 531, Universität Dortmund (1999)

    Google Scholar 

  7. Davidor, Y.: Epistasis variance: A viewpoint on GA-hardness. In: Rawlines, G.J.E. (ed.) FOGA-1, pp. 23–55. Morgan Kaufman, San Francisco (1991)

    Google Scholar 

  8. Naudts, B.: Measuring GA-hardness. Ph.d thesis. UV. Of Antwerp. Belgium (1998)

    Google Scholar 

  9. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  10. Altenberg, L.: NK fitness landscapes. Handbook of Evolutionary Computation (1997b)

    Google Scholar 

  11. Naudts, B., Kallel, L.: Comparison of summery statistics of fitness landscapes. IEEE Trans.Evol.Comp. (2000)

    Google Scholar 

  12. Guo, H., Hsu, W.H.: GA-hardness Revisited. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003) (poster paper)

    Chapter  Google Scholar 

  13. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, San Francisco, CA, pp. 184–192 (1995)

    Google Scholar 

  14. Altenberg, L.: Fitness Distance Correlation analysis: An instructive counter-example. In: ICGA, pp. 57–64 (1997a)

    Google Scholar 

  15. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. In: Studies in Fuzziness and Soft Computing, 1st edn. 104, Springer, Heidelberg (2002)

    Google Scholar 

  16. Altenberg, L.: Evolving better representations through selective genome growth. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation. Part 1 (1994)

    Google Scholar 

  17. Moraglio, A., Poli, R.: Topological interpretation of crossover. In: GECCO 2004

    Google Scholar 

  18. Radcliffe, N.J.: Equivalence class analysis of genetic algorithms. In: Foundations of Genetic Algorithms, vol. 3, Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  19. Huttel, H.: On Rice’s Theorem. Aalborg University (2001)

    Google Scholar 

  20. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 4, 67–82 (1997)

    Article  Google Scholar 

  21. Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal of Experimental and Theoretical Artificial Intelligence 2, 101–115 (1990)

    Article  Google Scholar 

  22. Rose, H., Ebeling, W., Asselmeyer, T.: The Density of States – a Measure of the Difficulty of Optimization Problems. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, Springer, Heidelberg (1996)

    Google Scholar 

  23. Naudts, B., Landrieu, I.: Comparing population mean curves. In: FOGA 2000 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borenstein, Y., Poli, R. (2004). Fitness Distributions and GA Hardness. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics