Skip to main content

The Phase Transition and Connectedness in Uniformly Grown Random Graphs

  • Conference paper
Algorithms and Models for the Web-Graph (WAW 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3243))

Included in the following conference series:

Abstract

We consider several families of random graphs that grow in time by the addition of vertices and edges in some ‘uniform’ manner. These families are natural starting points for modelling real-world networks that grow in time. Recently, it has been shown (heuristically and rigorously) that such models undergo an ‘infinite-order phase transition’: as the density parameter increases above a certain critical value, a ‘giant component’ emerges, but the speed of this emergence is extremely slow. In this paper we shall present some of these results and investigate the connection between the existence of a giant component and the connectedness of the final infinite graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollobás, B.: The evolution of random graphs. Trans. Amer. Math. Soc. 286, 257–274 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bollobás, B., Janson, S., Riordan, O.: The phase transition in the uniformly grown random graph has infinite order. Random Structures and Algorithms (to appear)

    Google Scholar 

  4. Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks, pp. 1–34. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  5. Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random graphs. Internet Mathematics 1, 1–35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24, 5–34 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B., Riordan, O.: Slow emergence of the giant component in the growing m-out graph (submitted), Preprint available from, http://www.dpmms.cam.ac.uk/~omr10/

  8. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures and Algorithms 18, 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Callaway, D.S., Hopcroft, J.E., Kleinberg, J.M., Newman, M.E.J., Strogatz, S.H.: Are randomly grown graphs really random? Phys. Rev. E 64, 041902 (2001)

    Article  Google Scholar 

  10. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Anomalous percolation properties of growing networks. Phys. Rev. E 64, 066110 (2001)

    Article  Google Scholar 

  11. Durrett, R.: Rigorous result for the CHKNS random graph model. In: Banderier, C., Krattenthaler, C. (eds.) Proceedings, Discrete Random Walks 2003. Discrete Mathematics and Theoretical Computer Science AC, pp. 95–104 (2003), http://dmtcs.loria.fr/proceedings/

  12. Durrett, R., Kesten, H.: The critical parameter for connectedness of some random graphs. In: Baker, A., Bollobás, B., Hajnal, A. (eds.) A Tribute to Paul Erdős, pp. 161–176. Cambridge Univ. Press, Cambridge (1990)

    Chapter  Google Scholar 

  13. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen 5, 290–297 (1959)

    MATH  Google Scholar 

  14. Erdös, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Kőzl. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  15. Gilbert, E.N.: Random graphs. Annals of Mathematical Statistics 30, 1141–1144 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janson, S., Knuth, D.E., Łuczak, T., Pittel, B.: The birth of the giant component. Random Structures and Algorithms 3, 233–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalikow, S., Weiss, B.: When are random graphs connected? Israel J. Math. 62, 257–268 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Łuczak, T.: Component behavior near the critical point of the random graph process. Random Structures and Algorithms 1, 287–310 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Riordan, O.: The small giant component in scale-free random graphs. Combinatorics, Probability and Computing (to appear)

    Google Scholar 

  20. Shepp, L.A.: Connectedness of certain random graphs. Israel J. Math. 67, 23–33 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Y.: A power law for connectedness of some random graphs at the critical point. Random Structures and Algorithms 2, 101–119 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bollobás, B., Riordan, O. (2004). The Phase Transition and Connectedness in Uniformly Grown Random Graphs. In: Leonardi, S. (eds) Algorithms and Models for the Web-Graph. WAW 2004. Lecture Notes in Computer Science, vol 3243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30216-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30216-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23427-2

  • Online ISBN: 978-3-540-30216-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics