Skip to main content

New Revision Algorithms

  • Conference paper
Algorithmic Learning Theory (ALT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3244))

Included in the following conference series:

Abstract

A revision algorithm is a learning algorithm that identifies the target concept, starting from an initial concept. Such an algorithm is considered efficient if its complexity (in terms of the resource one is interested in) is polynomial in the syntactic distance between the initial and the target concept, but only polylogarithmic in the number of variables in the universe. We give efficient revision algorithms in the model of learning with equivalence and membership queries. The algorithms work in a general revision model where both deletion and addition type revision operators are allowed. In this model one of the main open problems is the efficient revision of Horn sentences. Two revision algorithms are presented for special cases of this problem: for depth-1 acyclic Horn sentences, and for definite Horn sentences with unique heads. We also present an efficient revision algorithm for threshold functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, A., Hellerstein, L., Littlestone, N.: Learning in the presence of finitely or infinitely many irrelevant attributes. J. of Comput. Syst. Sci. 50, 32–40 (1995) Earlier version in 4th COLT (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bshouty, N., Hellerstein, L.: Attribute-efficient learning in query and mistakebound models. J. of Comput. Syst. Sci. 56, 310–319 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Koppel, M., Feldman, R., Segre, A.M.: Bias-driven revision of logical domain theories. Journal of Artificial Intelligence Research 1, 159–208 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Ourston, D., Mooney, R.J.: Theory refinement combining analytical and empirical methods. Artificial Intelligence 66, 273–309 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Richards, B.L., Mooney, R.J.: Automated refinement of first-order Horn-clause domain theories. Machine Learning 19, 95–131 (1995)

    Google Scholar 

  6. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks. Machine Learning 13, 71–101 (1993)

    Google Scholar 

  7. Wrobel, S.: Concept Formation and Knowledge Revision. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  8. Wrobel, S.: First order theory refinement. In: De Raedt, L. (ed.) Advances in ILP, pp. 14–33. IOS Press, Amsterdam (1995)

    Google Scholar 

  9. Goldsmith, J., Sloan, R.H., Turán, G.: Theory revision with queries: DNF formulas. Machine Learning 47, 257–295 (2002)

    Article  MATH  Google Scholar 

  10. Goldsmith, J., Sloan, R.H., Szörényi, B., Turán, G.: Theory revision with queries: Horn, read-once, and parity formulas. Artificial Intelligence 156, 139–176 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mooney, R.J.: A preliminary PAC analysis of theory revision. In: Petsche, T. (ed.) Computational Learning Theory and Natural Learning Systems. Volume III: Selecting Good Models, pp. 43–53. MIT Press, Cambridge (1995)

    Google Scholar 

  12. Sloan, R.H., Szörényi, B., Turán, G.: Projective DNF formulae and their revision. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 625–639. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Doshi, J.U.: Revising Horn formulas. Master’s thesis, Dept. of Computer Science, University of Kentucky (2003)

    Google Scholar 

  14. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Machine Learning 9, 147–164 (1992)

    MATH  Google Scholar 

  15. Valiant, L.G.: Projection learning. Machine Learning 37, 115–130 (1999)

    Article  MATH  Google Scholar 

  16. Pinker, S.: The Blank Slate: The Modern Denial of Human Nature. Viking Press (2002)

    Google Scholar 

  17. Valiant, L.G.: A neuroidal architecture for cognitive computation. Journal of the ACM 47, 854–882 (2000)

    Article  MathSciNet  Google Scholar 

  18. Valiant, L.G.: Robust logics. Artificial Intelligence 117, 231–253 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm. Machine Learning 2, 285–318 (1988)

    Google Scholar 

  20. Uehara, R., Tsuchida, K., Wegener, I.: Optimal attribute-efficient learning of disjunction, parity, and threshold functions. In: Ben-David, S. (ed.) EuroCOLT 1997. LNCS, vol. 1208, pp. 171–184. Springer, Heidelberg (1997)

    Google Scholar 

  21. Hegedüs, T., Indyk, P.: On learning disjunctions of zero-one threshold functions with queries. In: Li, M. (ed.) ALT 1997. LNCS, vol. 1316, pp. 446–460. Springer, Heidelberg (1997)

    Google Scholar 

  22. Hegedüs, T.: On training simple neural networks and small-weight neurons. In: Computational Learning Theory: EuroColt 1993. The Institute of Mathematics and its Applications Conference Series, vol. 53, pp. 69–82. Oxford University Press, Oxford (1994)

    Google Scholar 

  23. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35, 965–984 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schmitt, M.: On methods to keep learning away from intractability. Proc. International Conference on Artifical Neural Networks (ICANN) 1995 1, 211–216 (1995)

    Google Scholar 

  25. Sloan, R.H., Turán, G.: Learning from incomplete boundary queries using split graphs and hypergraphs. In: Ben-David, S. (ed.) EuroCOLT 1997. LNCS, vol. 1208, pp. 38–50. Springer, Heidelberg (1997)

    Google Scholar 

  26. Angluin, D.: Learning propositional Horn sentences with hints. Technical Report YALEU/DCS/RR-590, Department of Computer Science, Yale University (1987)

    Google Scholar 

  27. Hammer, P.L., Kogan, A.: Quasi-acyclic propositional Horn knowledge bases: optimal compression. IEEE Trans. Knowl. Data Eng. 7, 751–762 (1995)

    Article  Google Scholar 

  28. Arimura, H.: Learning acyclic first-order Horn sentences from entailment. In: Li, M. (ed.) ALT 1997. LNCS, vol. 1316, pp. 432–445. Springer, Heidelberg (1997)

    Google Scholar 

  29. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldsmith, J., Sloan, R.H., Szörényi, B., Turán, G. (2004). New Revision Algorithms. In: Ben-David, S., Case, J., Maruoka, A. (eds) Algorithmic Learning Theory. ALT 2004. Lecture Notes in Computer Science(), vol 3244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30215-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30215-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23356-5

  • Online ISBN: 978-3-540-30215-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics