Skip to main content

Predictive Graph Mining

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3245))

Abstract

Graph mining approaches are extremely popular and effective in molecular databases. The vast majority of these approaches first derive interesting, i.e. frequent, patterns and then use these as features to build predictive models. Rather than building these models in a two step indirect way, the SMIREP system introduced in this paper, derives predictive rule models from molecular data directly. SMIREP combines the SMILES and SMARTS representation languages that are popular in computational chemistry with the IREP rule-learning algorithm by Fürnkranz. Even though SMIREP is focused on SMILES, its principles are also applicable to graph mining problems in other domains. SMIREP is experimentally evaluated on two benchmark databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dehaspe, L.: Frequent Pattern Discovery in First-Order Logic. K. U. Leuven (1998)

    Google Scholar 

  2. Deshpande, M., Kuramochi, M., Karypis, G.: Frequent sub-structure-based approaches for classifying chemical compounds. In: Proc. ICDM 2003, pp. 35–42 (2003)

    Google Scholar 

  3. Kramer, S., De Raedt, L., Helma, C.: Molecular feature mining in HIV data. In: Provost, F., Srikant, R. (eds.) Proc. KDD 2001, pp. 136–143. ACM Press, New York (2001)

    Chapter  Google Scholar 

  4. Zaki, M.: Efficiently mining frequent trees in a forest. In: Hand, D., Keim, D., Ng, R. (eds.) Proc. KDD 2002, pp. 71–80. ACM Press, New York (2002)

    Chapter  Google Scholar 

  5. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. ICDM 2002 (2002)

    Google Scholar 

  6. Inokuchi, A., Kashima, H.: Mining significant pairs of patterns from graph structures with class labels. In: Proc. ICDM 2003, pp. 83–90 (2003)

    Google Scholar 

  7. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning 50, 321–354 (2003)

    Article  MATH  Google Scholar 

  8. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. ICDM 2001, pp. 179–186 (2001)

    Google Scholar 

  9. Yan, X., Han, J.: Closegraph: Mining closed frequent graph patterns. In: Proc. KDD 2003 (2003)

    Google Scholar 

  10. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Cohen, W.W., Hirsh, H. (eds.) Proc. ICML 1994, pp. 70–77. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  11. Cohen, W.W.: Fast effective rule induction. In: Proc. ICML 1995, pp. 115–123. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  12. King, R.D., Muggleton, S., Srinivasan, A., Sternberg, M.J.E.: Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc. of the National Academy of Sciences 93, 438–442 (1996)

    Article  Google Scholar 

  13. Weininger, D.: SMILES, a chemical language and information system 1. Introduction and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)

    Google Scholar 

  14. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

    Google Scholar 

  15. Srinivasan, A., Muggleton, S., Sternberg, M.E., King, R.D.: Theories for mutagenicity: a study of first-order and feature based induction. A.I. Journal 85, 277–299 (1996)

    Google Scholar 

  16. Cook, Holder: Graph-based data mining. ISTA: Intelligent Systems & their applications 15 (2000)

    Google Scholar 

  17. Gonzalez, J.A., Holder, L.B., Cook, D.J.: Experimental comparison of graph-based relational concept learning with inductive logic programming systems. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 84–100. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Warodom, G., Matsuda, T., Yoshida, T., Motoda, H., Washio, T.: Classifier construction by graph-based induction for graph-structured data. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS (LNAI), vol. 2637, pp. 52–62. Springer, Heidelberg (2003)

    Google Scholar 

  19. Geamsakul, W., Matsuda, T., Yoshida, T., Motoda, H., Washio, T.: Constructing a decision tree for graph structured data. In: Proc. MGTS 2003, pp. 1–10 (2003), http://www.ar.sanken.osaka-u.ac.jp/MGTS-2003CFP.html

  20. Horvath, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with lists and terms. Machine Learning 43, 53–80 (2001)

    Article  MATH  Google Scholar 

  21. Muggleton, S.: Inverting entailment and Progol. Machine Intelligence 14, 133–188 (1995)

    Google Scholar 

  22. Srinivasan, A., King, R.D., Bristol, D.W.: An assessment of ILP-assisted models for toxicology and the PTE-3 experiment. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 291–302. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karwath, A., De Raedt, L. (2004). Predictive Graph Mining. In: Suzuki, E., Arikawa, S. (eds) Discovery Science. DS 2004. Lecture Notes in Computer Science(), vol 3245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30214-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30214-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23357-2

  • Online ISBN: 978-3-540-30214-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics