Skip to main content

Learning of Event-Recording Automata

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3253))

Abstract

We extend Angluin’s algorithm for on-line learning of regular languages to the setting of timed systems. We consider systems that can be described by a class of deterministic event-recording automata. We present two algorithms that learn a description by asking a sequence of membership queries (does the system accept a given timed word?) and equivalence queries (is a hypothesized description equivalent to the correct one?). In the constructed description, states are identified by sequences of symbols; timing constraints on transitions are learned by adapting algorithms for learning hypercubes. The number of membership queries is polynomially in the minimal zone graph and in the biggest constant of the automaton to learn for the first algorithm. The second algorithm learns a (usually) smaller representation of the underlying system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alur, R., Fix, L., Henzinger, T.: Event-clock automata: A determinizable class of timed automata. Theoretical Computer Science 211, 253–273 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75, 87–106 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balcázar, J.L., Díaz, J., Gavaldá, R.: Algorithms for learning finite automata from queries: A unified view. In: Advances in Algorithms, Languages, and Complexity, pp. 53–72. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  6. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL: a tool suite for the automatic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Bouyer, P.: Untameable timed automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A model-checking tool for real-time systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  10. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C.: Robby, and H. Zheng. Bandera: Extracting finite-state models from Java source code. In: Proc. 22nd Int. Conf. on Software Engineering (June 2000)

    Google Scholar 

  11. Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, Springer, Heidelberg (1990)

    Google Scholar 

  12. Fernandez, J.-C., Jard, C., Jéron, T., Viho, C.: An experiment in automatic generation of test suites for protocols with verification technology. Science of Computer Programming 29 (1997)

    Google Scholar 

  13. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  14. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 357. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull- Trauring, A., Trakhtenbrot, M.: STATEMATE: A working environment for the development of complex reactive systems. IEEE Trans. on Software Engineering 16(4), 403–414 (1990)

    Article  Google Scholar 

  17. Henzinger, T., Manna, Z., Pnueli, A.: Temporal proof methodologies for timed transition systems. Information and Computation 112, 173–337 (1994)

    Article  MathSciNet  Google Scholar 

  18. Henzinger, T., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Holzmann, G.: Logic verification of ANSI-C code with SPIN. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 131–147. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Proc. 15th Int. Conf. on Computer Aided Verification (2003)

    Google Scholar 

  21. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  22. Maler, O., Pnueli, A.: On recognizable timed languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004), http://www-verimag.imag.fr/PEOPLE/Oded.Maler/

    Chapter  Google Scholar 

  23. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. Information and Computation 103, 299–347 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schmitt, M., Ebner, M., Grabowski, J.: Test generation with Autolink and Testcomposer. In: Proc. 2nd Workshop of the SDL Forum Society on SDL and MSC - SAM 2000 (June 2000)

    Google Scholar 

  25. Springintveld, J., Vaandrager, F.: Minimizable timed automata. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 130–147. Springer, Heidelberg (1996)

    Google Scholar 

  26. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grinchtein, O., Jonsson, B., Leucker, M. (2004). Learning of Event-Recording Automata. In: Lakhnech, Y., Yovine, S. (eds) Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. FTRTFT FORMATS 2004 2004. Lecture Notes in Computer Science, vol 3253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30206-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30206-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23167-7

  • Online ISBN: 978-3-540-30206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics