Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3254))

Abstract

In this tutorial, we give an introduction to the increasingly important effect of leakage in recent and upcoming technologies. The sources of leakage such as subthreshold leakage, gate leakage, pn-junction leakage and further GIDL, hot-carrier effect and punchthrough are identified and analyzed separately and also under PTV variations.

Since leakage will dominate power consumption in future technologies, we also review leakage optimization techniques and leakage estimation approaches supporting optimizations especially at higher abstraction levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Technology Roadmap for Semiconductors ITRS (2003), public.itrs.net/

  2. Chandrakasan, A., Bowhill, W., Fox, F.: Design of High-Performance Microprocessor Circuits. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  3. Keshavarzi, A., Roy, K., Hawkins, C.F.: Intrinsic Leakage in Low Power Deep Submicron CMOS ICs. In: Proc. Int’l Test Conf. 1997 (ITC 1997), p. 146 (1997)

    Google Scholar 

  4. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits. Proc. of the IEEE 91(2) (2003)

    Google Scholar 

  5. Srinivasan, J.: An Overview of Static Power Dissipation. Internal report, rsim.cs.uiuc.edu/~srinivsn/Pubs/other/leakage.ps

  6. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  7. Fotty, D.: MOSFET Modeling With SPICE. Prentice Hall PTR, Englewood Cliffs (1997)

    Google Scholar 

  8. Mukhopadhyay, S., Raychowdhury, A., Roy, K.: Accurate Estimation of Total Leakage Current in Scaled CMOS Logic Circuits Based on Compact Current Modeling. In: Proc. on Design Automatisation Conference DAC (2003)

    Google Scholar 

  9. Liu, Z.H., et al.: Threshold Voltage Model for Deep-Submicrometer MOSFET’s. IEEE Trans. On Elec. Dev. (1993)

    Google Scholar 

  10. Mukhopadhyay, S., Roy, K.: Modeling and Estimation of Total Leakage Current in Nano-scaled CMOS Devices Considering the Effect of Parameter Variation. In: Int’l Symp. on Low Power Electronics and Design ISLPED (2003)

    Google Scholar 

  11. Rao, R.M., Burns, J.L., Devgan, A., Brown, R.B.: Efficient Techniques for Gate Leakage Estimation. In: Int’l Symp. on Low Power Electronics and Design ISLPED (2003)

    Google Scholar 

  12. Kim, N.S., Flautner, K., Hu, J.S., et al.: Leakage Current: Moore’s Law Meets Static Power. IEEE Computer 36(12) (2003)

    Google Scholar 

  13. Pagey, M.P.: Characterization and Modeling of Hot-Carrier Degradation in Sub- Micron NMOSFETs (2002), etd.library.vanderbilt.edu/ETD-db/theses/available/etd-0619102-103401/unrestricted/thesis.pdf

  14. Pierret, R.: Semiconductor Device Fundamentals. Addison-Wesley, Reading (1996)

    Google Scholar 

  15. Semenov, O., Pradzynski, A., Sachdev, M.: Impact of Gate Induced Drain Leakage on Overall Leakage of Submicrometer CMOS VLSI Circuits. IEEE Trans. on Semicond. Manufacturing 15(1) (2002)

    Google Scholar 

  16. Narenda, S.: Leakage Issues in IC Design: Trends and challenges in scaling CMOS devices, circuits and systems. In: Proc. of Int’l Conf. on Computer Aided Design ICCAD (2003)

    Google Scholar 

  17. Rao, R., Srivastava, A., Blaauw, D., Sylvester, D.: Statistical Estimation of Leakage Current Considering Iter- and Intra-Die Process Variations. In: Int’l Symp. on Low Power Electronics and Design ISLPED (2003)

    Google Scholar 

  18. Devgan, A.: Leakage Issues in IC Design: Process and Environmental variations. In: Proc. of Int’l Conf. on Computer Aided Design ICCAD (2003)

    Google Scholar 

  19. Narendra, S., De, V., Borkar, S., Antoniadis, D., Chandrakasan, A.: Full-Chip Subthreshold Leakage Power Prediction Model for sum-0.18 μm CMOS. In: Int’l Symp. on Low Power Electronics and Design ISLPED (2002)

    Google Scholar 

  20. Su, H., Liu, F., Devgan, A., Acar, E., Nassif, S.: Full chip leakage estimation considering power supply and temperature variations. In: Int’l Symp. on Low Power Electronics and Design ISLPED (2003)

    Google Scholar 

  21. Aloul, F.A., Hassoun, S., Sakallah, K.A., Blaauw, D.: Robust SAT-Based Search Algorithm for Leakage Power Reduction. In: Proc. on Int’l Workshop on Power and Timing Modeling, Optimization and Simulation PATMOS (2002)

    Google Scholar 

  22. Chen, Z., Johnson, M., Wei, L., Roy, K.: Estimation of Standby Leakage Power in CMOS Circuits Considering Accurate Modeling of Transistor Stacks. In: Int’l Symp. on Low Power Electronics and Design ISLPED (1998)

    Google Scholar 

  23. Acar, E., Devgan, A., Rao, R., Liu, Y., Su, H., Nassif, S., Burns, J.: Leakage and Leakage Sensitivity Computations for Combinational Circuits. In: Int’l Symp. on Low Power Electronics and Design ISLPED (2003)

    Google Scholar 

  24. Cao, L.: Circuit Power Estimation Using Pattern Recognition Techniques. In: Proc. of Int’l Conf. on Computer Aided Design ICCAD (2002)

    Google Scholar 

  25. Butts, J.A., Sohi, G.S.: A static power model for architects. In: Proc. Int’l Symp. on Microarchitecture (2000)

    Google Scholar 

  26. Zhang, Y., Parikh, D., Stan, M., Sankaranarayanan, K., Skadron, K.: HotLeakage: A Temperature-Aware Model of Subthreshold and Gate Leakage for Architects. Tech Report CS-2003-05, Univ. of Virginia Dept. of Computer Science (2003)

    Google Scholar 

  27. HotLeakage estimator executable, lava.cs.virginia.edu/HotLeakage

  28. Johnson, M.C., Somasekhar, D., Chiou, L.Y., Roy, K.: Leakage Control With Efficient Use of Transistor Stacks in Single Threshold CMOS. IEEE Trans. on VLSI Systems 10(1) (2002)

    Google Scholar 

  29. Tyagi, S., et al.: A 130 nm Generation Logic featuring 70 nm transistors, dual Vt transistors and 6 layers of Cu interconnects. In: Dig. Tech. Papers Int. Electron Devices Meeting (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Helms, D., Schmidt, E., Nebel, W. (2004). Leakage in CMOS Circuits – An Introduction. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2004. Lecture Notes in Computer Science, vol 3254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30205-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30205-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23095-3

  • Online ISBN: 978-3-540-30205-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics